Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Obtaining copper concentrate during iron ore processing

https://doi.org/10.17073/0021-3438-2023-1-5-15

Abstract

The data on the complex processing of iron ore from one of the deposits of the Republic of Kazakhstan, which involves several operations of wet magnetic separation with re-grinding of raw products and their subsequent refining to produce a conditioned iron concentrate with 65–66 % iron containing 79–80 % Fe and 2.2–2.5 % Si, are presented. It was found that during the magnetic enrichment of the ore under study, the copper minerals concentrate in the magnetic separation tailings and the copper content in them increases from 0.093 to 0.2 %. A scheme and reagent system have been developed for the recovery of conditioned copper concentrate from magnetically enriched tailings. To obtain copper concentrate, magnetic separation tailings are subjected to regrinding in a lime medium to a fineness of 75 % of the –0.071 mm grade. After two operations of the main copper flotation with the use of water glass, butyl xanthate and frother MIBK, waste tailings are obtained. The froth product of the first basal flotation is cleaned twice. The result is a copper concentrate containing 15.2 % copper, 26.5 % iron, 17.5 % sulfur, 3.47 % silicon, 1.4 % aluminum and 8.5 % zinc, which corresponds to the KM-7 grade according to GOST R 52998-2008. Waste tailings contain: copper 0.08 %, iron 20.1 %, sulfur 0.25 %, silicon 16.2 %, aluminum 6.4 % and zinc 0.045 %. The influence of xanthates with different length and structure of hydrocarbon radical as well as hostaflots and amyl aeroflots on the process of copper flotation is studied. The high efficiency of butyl xanthate in the flotation of copper minerals has been confirmed.

About the Authors

A. A. Lavrinenko
Institute of Complex Development of Mineral Resources n.a. acad. N.V. Melnikov of the Russian Academy of Sciences
Russian Federation

Dr. Sci. (Eng.), Chief Researcher, Head of the Laboratory of Сomplex Processing of Mineral Raw Materials of Non-Traditional 

 Kryukovsky impasse, Moscow, 111020



O. G. Lucinian
Institute of Complex Development of Mineral Resources n.a. acad. N.V. Melnikov of the Russian Academy of Sciences
Russian Federation

Cand. Sci. (Eng.), Leading Engineer of Laboratory of Complex Processing of Mineral Raw Materials of Non-Traditional

 Kryukovsky impasse, Moscow, 111020



I. N. Kuznetsova
Institute of Complex Development of Mineral Resources n.a. acad. N.V. Melnikov of the Russian Academy of Sciences
Russian Federation

Cand. Sci. (Eng.), Senior Researcher of Laboratory of Complex Processing of Mineral Raw Materials of Non-Traditional

 Kryukovsky impasse, Moscow, 111020



V. G. Olennikov
LLC NPF “Mashgeo”
Russian Federation

 Director

 105 Skuratov str., Tula, 300026



References

1. Karimova L.M. Combined method for processing offbalance copper sulfide ore. Vestnik MGTU im. Nosova. 2014; (2): 11–15. (In Russ.).

2. Gorlova O.E., Yun A.B., Sinyanskaya O.M., Medyanik N.L. Combined processing of dumped complex opper ores of the Taskora deposit: process development and field trials. Tsvetnye Metally. 2018; (12): 14–20. (In Russ.).

3. Jonović R., Avramović L., Stevanović Z., Jonović M. Technological investigations of sulphide oxidation from flotation tailings in order to increase the degree of copper leaching. Mining and Metallurgy Engineering Bor. 2014; (3): 153–160. DOI: 10.5937/mmeb1403153j.

4. Bochkarev G.R., Pushkareva G.I., Rostovtsev V.I. Intensification of ore preparation and sorption extraction of metals from technogenic raw materials. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2007; (3): 129–139. (In Russ.).

5. Chanturiya V.A., Bunin I.Zh. Non-traditional high-energy methods of disintegration and opening of finely dispersed mineral complexes. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2007; (3): 107–128. (In Russ.).

6. Korostovenko V.V., Strekalova T.A., Korostovenko L.P., Kaplichenko N.M. Electrophysical methods in combined schemes of the main enrichment of sulfide ores. Uspekhi sovremennogo estestvoznaniya. 2018; (6): 84–89. (In Russ.).

7. Gao M., Holmes R., Pease J. The latest developments in fine and ultrafine grinding technologies (Plenary). In: XXIII International Mineral Processing Congress (Istanbul, Turkey, 3—8 Sept. 2006). 2006; 1: 30–37.

8. Lavrinenko A.A., Sarkisova L.M., Shrader E.A., Chikhladze V.V., Shimkunas Ya.M. Investigation of the possibility of flotation extraction of sulfides from tailings of copper-nickel ores enrichment. Gornyi informatsionnoanaliticheskii byulleten’. 2013; (2): 98–102. (In Russ.).

9. Юн А.Б. Восполнение сырьевой базы Жезказганского региона за счет применения новых методов добычи и переработки забалансовых и бедных руд. В сб.: Труды Национального центра по комплексной переработке минерального сырья Республики Казахстан. Алматы, 2013. С. 335–348.

10. Кондратьев С.А. Реагенты-собиратели в элементарном акте флотации. Новосибирск: Изд-во СО РАН, 2012; 187–202.

11. Лашхия В.Ю., Руднев Б.П. Способ обогащения бедных и забалансовых серебросодержащих сульфидных руд и хвостов обогащения. Пат. 2555280 (РФ). 2015. https://patenton.ru/patent/RU2555280C1.pdf.

12. Bhaskar Raju G., Khangaonkar P.R. Electro-flotation of chalcopyrite fines. International Journal of Mineral Processing. 1982; 9 (2): 133–143.

13. Rao S.R., Finch J.A. Base metal oxide flotation using long chain xanthates. International Journal of Mineral Processing. 2003; 69 (1–4): 251–258. https://doi.org/10.1016/S0301-7516(02)00130-8

14. Bag B., Das B., Mishra B.K. Geometrical optimization of xanthate collectors with copper ions and their response to flotation. Minerals Engineering. 2011; 24 (8): 760–765. https://doi.org/10.1016/j.mineng.2011.01.006

15. Ignatkina V.A., Bocharov V.A., Dyachkov F.G. Study of the collecting properties of diisobutyl dithiophosphinate during the flotation of sulfide minerals from pyrite ores. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2013; (5): 138–146. (In Russ.).

16. Ackerman P.K., Harris G.H., Klimpel R.R., Aplan F.F. Evaluation of flotation collectors for copper sulfides and pyrite. III. Effect of xanthate chain length and branching. International Journal of Mineral Processing. 1987; 21 (1–2): 141–156. https://doi.org/10.1016/0301-7516(87)90011-1

17. Hangone G., Bradshaw D., Ekmekci Z. Flotation of a copper sulphide ore from Okiep using thiol collectors and their mixtures. Journal of the Southern African Institute of Mining and Metallurgy. 2005. 105: 199–206.

18. Jianhua Chen, Zhenghe Xu, Ye Chen. Electronic structure and surfaces of sulfide minerals. In: Density functional theory and applications. 2020. Р. 181–236. https://doi.org/10.1016/B978-0-12-817974-1.00005-3

19. Noirant G., Benzaazoua M., Kongolo M., Bussière B., Frenette K. Alternatives to xanthate collectors for the desulphurization of ores and tailings: Pyrite surface chemistry. Colloids and Surfaces A. 2019; 577: 333–346. https://doi.org/10.1016/j.colsurfa.2019.05.086

20. Mehdi Bazmandeh, Abbas Sam. Improvement of copper sulfide flotation using a new collector in an optimized addition scheme. Physicochemical Problems of Mineral Processing. 2021; 57 (6): 71–79. https://doi.org/10.37190/ppmp/142503

21. Tijsseling L.T., Dehaine Q., Rollinson G.K., Glass H.J. Flotation of mixed oxide sulphide copper-cobalt minerals using xanthate, dithiophosphate, thiocarbamate and blended collectors. Minerals Engineering. 2019; 138: 246–256. https://doi.org/10.1016/j.mineng.2019.04.022

22. Walter Amos Ngobeni, Gregory Hangone. The effect of using sodium di-methyl-dithiocarbamate as a co-collector with xanthates in the froth flotation of pentlandite containing ore from Nkomati mine in South Africa. Minerals Engineering. 2013; 54: 94–99. https://doi.org/10.1016/j.mineng.2013.04.027

23. Corin K.C., Bezuidenhout J.C., O’Connor C.T. The role of dithiophosphate as a co-collector in the flotation of a platinum group mineral ore. Minerals Engineering. 2012; 36–38: 100–104. https://doi.org/10.1016/j.mineng.2012.02.019


Review

For citations:


Lavrinenko A.A., Lucinian O.G., Kuznetsova I.N., Olennikov V.G. Obtaining copper concentrate during iron ore processing. Izvestiya. Non-Ferrous Metallurgy. 2023;1(1):5-15. https://doi.org/10.17073/0021-3438-2023-1-5-15

Views: 811


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)