Effect of heating VK and TK group hard alloys in various media on surface quality
https://doi.org/10.17073/0021-3438-2022-6-71-80
Abstract
The studies carried out to explore the modifying effect on the surface of a hard alloy, surface alloying and thermochemical treatment of metal, thermal diffusion saturation, vacuum ion-plasma deposition demonstrated changes in surface roughness and performance. This paper used roughness to evaluate the behavior of various hard alloy groups when heated in various media. The samples were 5× 5× 35 mm bars and 15.8 ×15.8 mm tetrahedral plates made of VK8 and T14K8 hard alloys. Surface roughness parameters were measured on the profilometer implementing the contact (probe) method. Roughness values obtained were analyzed in the Microsoft Excel system based on an integral percentage and histograms were constructed. The effect of the heating medium on the surface roughness was studied both on bars and plates (with and without holes) using the saturating element/buffer substance (50–100 % BaCl2) melt. K4(Fe(CN)6 potassium ferrocyanide and Na2B4O7 borax were used as a saturating element (25 %). Microhardness and cutting wear were determined directly on the products (after determining the heating media effect on roughness). The heating of VK8 and T14K8 hard alloys in various media increases roughness and reduces cutting wear up to 2 times. The structure of initial materials before and after heating in various melts was studied using the JCM-6000 scanning electron microscope (Jeol Ltd., Japan) at a magnification of 1000–3000×. Plates in their initial state and after heating in various melts were subjected to resistance tests on the 1A616 screw-cutting lathe by face turning of an axle billet made of OS steel (similar in structure and properties to St45) 210 ×1650 mm in size of continuously cast metal (GOST 4728-2010). X-ray diffraction analysis of the VK8 hard alloy after heating in various media demonstrated the absence of changes in the phase composition. Along with this, there was a slight change in the carbide phase fine structure parameters of the alloy, namely a slight increase in micro-stresses with a simultaneous decrease in mosaic blocks.
About the Authors
S. I. BogodukhovRussian Federation
Dr. Sci. (Eng.), prof., Department of materials science and technology materials
460018, Orenburg, Pobeda ave., 13
E. S. Kozik
Russian Federation
Cand. Sci. (Eng.), associate prof., Department of descriptive geometry, engineering and computer graphics
Orenburg
E. V. Svidenko
Russian Federation
Cand. Sci. (Eng.), lecturer, Department of materials science and technology materials
Orenburg
References
1. Мухин И.М. Твердые сплавы в мелкосерийном производстве. Киев: Наук. думка, 1981. Mukhin I.M. Hard alloys in small-scale production. Kiev: Naukova Dumka, 1981 (In Russ.).
2. Креймер Г.С. Долговечность твердых сплавов. М.: Металлургия, 1971. Kreimer G.S. Durability of hard alloys. Moscow: Metallurgiya, 1971 (In Russ.).
3. Кипарисов С.С., Левинский Ю.В., Петров A.П. Карбид титана (получение, свойства и применение). М.: Металлургия, 1987. Kiparisov S.S., Levinsky Yu.V., Petrov A.P. Titanium carbide (obtaining, properties and application). Moscow: Metallurgiya, 1987 (In Russ.).
4. Лошак М.Г., Александрова Л.И. Упрочнение твердых сплавов. Киев: Наук. думка, 1975. Loshak M.G., Alexandrova L.I. Hardening of hard alloys. Kiev: Naukova Dumka, 1975 (In Russ.).
5. Дроздов Ю.Н., Павлов В.Г., Пучков В.Н. Трение и износ в экстремальных условиях: Справочник. М.: Машиностроение, 1986. Drozdov Yu.N., Pavlov V.G., Puchkov V.N. Friction and wear under extreme conditions: Directory. Moscow: Mashinostroenie, 1986 (In Russ.).
6. Zhang Li., Wang Yuan-Jie., Yu Xian-Wang., Chen Shu., Xiong Xiang-Jin. Crack propagation characteristic and toughness of functionally graded WC—CO cemented carbide. Int. J. Refract. Met. Hard Mater. 2008. Vol.26. No. 4. P. 295—300.
7. Colovcan V.T. Some analytical consequences of experiment data on properties of WC—Co hard metals. Int. J. Refract. Met. Hard Mater. 2008. Vol. 26. No. 4. P. 301—305.
8. Guo Zhixing., Xiong Ji., Yang Mei., Jiang Cijin. WC—TiC— Ni cemented carbide with enhanced properties. J. Alloys Compd. 2008. Vol. 465. No. 1-2. P. 157—162.
9. Креймер Г.С. Прочность твердых сплавов. М.: Металлургия, 1971. Kreimer G.S. Strengh of hard alloys. Moscow: Metallurgiya, 1971 (In Russ.).
10. Панов В.С., Чувилин А.М. Технология и свойства спеченных твердых сплавов и изделий из них. М.: Издво МИСиС, 2001. Panov V.S., Chuvilin А.М. Technology and properties of sintered hard alloys and their products. Мoscow: MISIS, 2001 (In Russ.).
11. Bock H., Hoffman H., Blumenauer H. Mechanische Eigenschaften von Wolframkarbid-Kobalt legierugen. Technik. 1976. Bd. 31. No. 1. S. 47—51.
12. Gurland J. The Fracture strength of sintered WC—Co alloys in relation to composition and particle spacing. Trans. Met. Soc. AIME. 1963. Vol. 227. No. 1. P. 28—43.
13. Suzuki H., Hayashi K. Strenght of WC—Co cemented carbides in relation to their fracture sources. Planseeber. Pulvermet. 1975. Vol. 23. No. 1. P. 24—36.
14. Tokova L.V., Zaitsev A.A., Kurbatkina V.V., Levashov E.A., Sidorenko D.A., Andreev V.A. Features of the influence of ZrO2 and WC nanodispersed additives on the properties of metal matrix composite. Russ. J. Non-Ferr. Met. 2014. Vol. 55. No. 2. P. 186—190.
15. Бондаренко В.А. Обеспечение качества и улучшение характеристик режущих инструментов. М.: Машиностроение, 2000. Bondarenko V.A. Quality assurance and improvement of characteristics of cutting tools. Мoscow: Machinostroenie, 2000 (In Russ.).
16. Либенсон Г.А. Процессы порошковой металлургии. М.: Изд-во МИСиС, 2001. Т. 1. Libenson G.A. Powder metallurgy processes. Мoscow: MISIS, 2001. Vol. 1 (In Russ.).
17. Kim C.S., Massa T.P., Rohrer G.S. Modeling the relationship between microstructural features and the strengh of WC—Co composites. Int. J. Refract. Met. Hard Mater. 2006. Vol. 24 (1). P. 89—100.
18. Yamamoto T., Ikuhara Y., Watanabe T., Shirase F. High resolution microscopy study in Cr3C2-doped WC—Co. J. Mater. Sci. 2001. No. 36. P. 3885—3890.
19. Jaensson B.O. Die Untersuchung von Verformungsersheinungen in Hochfeste WC—Co Legierungeen mit Hilfeeines neuen Localisierungsverfahrens fur die Abdruckelektronenmicroscopie. Pract. Metallograf. 1972. Bd. 9. No. 11. S. 624—641.
20. Третьяков В.И. Металлокерамические твердые сплавы. М.: Металлургиздат, 1962. Tretyakov V.I. Nitriding of refractory metals. Moscow: Metallurgizdat, 1962 (In Russ.).
21. Wang J.B., Lian Y.Y., Feng F., Chen Z., Tan Y., Yang S., Liu X., Qiang J.B., Liu T.Z., Wei M.Y., Wang Y.M. Microstructure of the tungsten and reduced activation ferritic-martensitic steel joint brazed with an FE-based amorphous alloy. Fusion Eng. Design. 2019. Vol. 138. P. 164—169.
22. Panov V.S. The role of binding phase in hard alloys (Analytical review). Inorg. Mater.: Appl. Res. 2021. Vol. 12. No. 1. P. 30—33.
23. Lantsev E.A., Malekhonova N.V., Nokhrin A.V., Chuvil’- deev V.N., Boldin M.S., Andreev P.V., Smetanina K.E., Murashov A.A., Blagoveshchenskiy Y., Isaeva N.V. Spark plazmasintering of fine-grained WC hard alloys with ultra-low cobalt content. J. Alloys Compd. 2021. Vol. 857. P. 157—159.
24. Oskolkova T.N., Glezer A.M. Surface hardening of hard tungsten-carbide alloys: a review. Steel Trans. 2017. Vol. 47. No. 12. P. 788—796.
25. Jonsson H. Studies of the binder phase in WC—Co cemented carbides heat-treated at 950 °C. Planseeber. Pulvermet. 2019. Vol. 1. P. 37—55.
Review
For citations:
Bogodukhov S.I., Kozik E.S., Svidenko E.V. Effect of heating VK and TK group hard alloys in various media on surface quality. Izvestiya. Non-Ferrous Metallurgy. 2022;28(6):71-80. (In Russ.) https://doi.org/10.17073/0021-3438-2022-6-71-80