Effect of laser surface modification on the structure and mechanical properties of Al–8%Ca, Al–10%La, Al–10%Ce, and Al–6%Ni eutectic aluminum alloys
https://doi.org/10.17073/0021-3438-2022-6-58-70
Abstract
Additive manufacturing, which includes a set of technologies for manufacturing complex-shaped products with the required set of properties, is currently widely developed. Most additive technologies are associated with the manufacture of the product by melting and fusion of metal powder particles due to laser irradiation. Al–Ca, Al–Ce, Al–La, and Al–Ni eutectic aluminum alloys featuring excellent casting properties are supposedly promising for use in additive technologies. However, there is very little information on the effect of laser processing on such eutectic structures in the literature. In this regard, the paper investigated the effect of laser irradiation on the structure and mechanical properties of samples made of eutectic compositions, namely Al–8%Ca, Al–10%La, Al–10%Ce, and Al–6%Ni. This was achieved by continuous laser modification of their surfaces. The hardening level was evaluated by measuring the microhardness of the modified surface. The mechanisms of sample fracture under tensile testing were established. It was shown that the distribution of the second component in the structure of modified sample surfaces of all the four alloys becomes more uniform compared to the base metal structure. In the Al–8%Ca alloy, the greatest hardening effect was observed, which, however, contributes to embrittlement under tensile stress. However, the modified Al–8%Ca alloy is of interest because of its increased hardness and possibly increased wear resistance. On the contrary, laser modification of the Al–10%Ce, Al–10%La, and Al–6%Ni alloy sample surfaces provides a lower hardening effect, but increases their tensile strength with the formation of a ductile or mixed ductile-brittle fracture. The results obtained confirm the prospects of using the Al–Ca, Al–Ce, Al–La, and Al–Ni alloys in additive manufacturing.
Keywords
About the Authors
S. O. RogachevRussian Federation
Cand. Sci. (Eng.), assistant professor of the Department of physical metallurgy and physics of strength
119049, Moscow, Leninskiy pr., 4
E. A. Naumova
Russian Federation
Cand. Sci. (Eng.), assistant professor of the Department of metal forming
Moscow
A. A. Komissarov
Russian Federation
Cand. Sci. (Eng.), head of the Laboratory «Hybrid Nanostructured Materials»
Moscow
M. A. Vasina
Russian Federation
graduate student, engineer of the Department of metal forming
Moscow
M. D. Pavlov
Russian Federation
engineer of the Center of prototyping of high complexity «Kinetics»
Moscow
A. A. Tokar’
Russian Federation
a specialist in educational and methodological work of the Department of physical metallurgy and physics of strength
Moscow
References
1. Zafar M.Q., Zhao H. 4D Printing: Future insight in additive manufacturing. Met. Mater. Int. 2019. Vol. 26. P. 564—585. DOI: 10.1007/s12540-019-00441-w.
2. Read N., Wang W., Essa K., Attallah M.M. Selective laser melting of AlSi10Mg alloy: Process optimization and mechanical properties development. Mater. Design. 2015. Vol. 65. P. 417—424. DOI: 10.1016/j.matdes.2014.09.044.
3. Гаршев А.В., Козлов Д.А., Евдокимов П.В., Филиппов Я.Ю., Орлов Н.К., Путляев В.И., Четвертухин А.В., Петров А.К. Анализ порошков алюминиевых сплавов, изготовленных распылением расплавов и предназначенных для производства изделий методами аддитивных технологий. Материаловедение. 2018. No. 12. С. 12—16. DOI: 10.31044/1684-579X-2018-0-12-12-16. Garshev A.V., Kozlov D.A., Evdokimov P.V., Filippov Y.Y., Orlov N.K., Putlyaev V.I., Chetvertukhin A.V., Petrov A.K. Analysis of aluminum alloy powders for additive manufacturing fabricated by atomization. Inorg. Mater.: Appl. Res. 2019. Vol. 10. P. 901—905. DOI: 10.1134/S2075113319040130.
4. Попкова И.С., Золоторевский В.С., Солонин А.Н. Производство изделий из алюминия и его сплавов методом селективного лазерного плавления. Технология легких сплавов. 2015. No. 4. С. 14—24. Popkova I.S., Zolotorevskij V.S., Solonin A.N. Production of products from aluminum and its alloys by selective laser melting. Tekhnologiya legkikh splavov. 2015. No. 4. Р. 14—24 (In Russ.).
5. Galy C., Le Guen E., Lacoste E., Arvieu C. Main defects observed in aluminum alloy parts produced by SLM: From causes to consequences. Addit. Manuf. 2018. Vol. 22. P. 165—175. DOI: 10.1016/j.addma.2018.05.005.
6. Gromov A.A., Nalivaiko A.Yu., Ambaryan G.N., Vlaskin M.S., Buryakovskaya O.A., Kislenko S.A., Zhuk A.Z., Shkolnikov E.I., Slyusarskiy K.V., Osipenkova A.A., Arnautov A.N. Aluminum—аlumina сomposites: Pt. I. Obtaining and characterization of powders. Materials. 2019. Vol. 12. P. 3180. DOI: 10.3390/ma12193180.
7. Кубанова А.Н., Сергеев А.Н., Добровольский Н.М., Гвоздев А.Е., Медведев П.Н., Малий Д.В. Особенности материалов и технологий аддитивного производства изделий. Чебышевский сборник. 2020. Т. 20. No. 3. С. 453—477. Kubanova A.N., Sergeev A.N., Dobrovol’skij N.M., Gvozdev A.E., Medvedev P.N., Malij D.V. Features of materials and technologies for additive manufacturing of products. Chebyshevskij sbornik. 2020. Vol. 20. No. 3. P. 453—477 (In Russ.).
8. Rogachev S.O., Naumova E.A., Vasileva E.S., Magurina M.Yu., Sundeev R.V., Veligzhanin A.A. Structure and mechanical properties of Al—Ca alloys processed by severe plastic deformation. Mater. Sci. Eng. A. 2019. Vol. 767. P. 138410. DOI: 10.1016/j.msea.2019.138410.
9. Marola S., Manfredi D., Fiore G., Poletti M.G., Lombardi M., Fino P., Battezzati L. A comparison of Selective Laser melting with bulk rapid solidification of AlSi10Mg alloy. J. Alloys. Compd. 2018. Vol. 742. P. 271—279. DOI: 10.1016/j.jallcom.2018.01.309.
10. Liu X., Zhao C., Zhou X., Shen Z., Liu W. Microstructure of selective laser melted AlSi10Mg alloy. Mater. Design. 2019. Vol. 168. P. 107677. DOI: 10.1016/j.matdes.2019.107677.
11. Maskery I., Aboulkhair N.T., Aremu A.O., Tuck C.J., Ashcroft I.A., Wildman R.D., Hague R.J.M. A mechanical property evaluation of graded density Al—Si10—Mg lattice structures manufactured by selective laser melting. Mater. Sci. Eng. A. 2016. Vol. 670. P. 264—274. DOI: 10.1016/j.msea.2016.06.013.
12. Zhu S., Song S., Chen Y., Zhao F., Yang W., Li Z., Shi Y., Yu S. Effect of in-situ Al2O3 on tensile strength and ductility of AlSi10Mg alloy fabricated by selective laser melting. Mater. Lett. 2022. Vol. 308. P. 131108. DOI: 10.1016/j.matlet.2021.131108.
13. Takata N., Kodaira H., Sekizawa K., Suzuki A., Kobashi M. Change in microstructure of selectively laser melted AlSi10Mg alloy with heat treatments. Mater. Sci. Eng. A. 2017. Vol. 704. P. 218—228. DOI: 10.1016/j.msea.2017.08.029.
14. Al-Saedi D.S.J., Masood S.H., Faizan-Ur-Rab M., Alomarah A., Ponnusamy P. Mechanical properties and energy absorption capability of functionally graded F2BCC lattice fabricated by SLM. Mater. Design. 2018. Vol. 144. P. 32—44. DOI: 10.1016/j.matdes.2018.01.059.
15. Nalivaiko A.Y., Ozherelkov D.Y., Arnautov A.N., Zmanovsky S.V., Osipenkova A.A., Gromov A.A. Selective laser melting of aluminum-alumina powder composites obtained by hydrothermal oxidation method. Appl. Phys. A: Mater. Sci. Process. 2020. Vol. 126. No. 11. P. 871. DOI: 10.1007/s00339-020-04029-9.
16. Li X.P., Wang X.J., Saunders M., Suvorova A., Zhang L.C., Liu Y.J., Fang M.H., Huang Z.H., Sercombe T.B. A selective laser melting and solution heat treatment refined Al—12Si alloy with a controllable ultrafine eutectic microstructure and 25 % tensile ductility. Acta Mater. 2015. Vol. 95. P. 74—82. DOI: 10.1016/j.actamat.2015.05.017.
17. Zhang C., Zhu H., Liao H., Cheng Y., Hu Z., Zeng X. Effect of heat treatments on fatigue property of selective laser melting AlSi10Mg. Int. J. Fatigue. 2018. Vol. 116. P. 513— 522. DOI: 10.1016/j.ijfatigue.2018.07.016.
18. Rao J.H., Zhang Y., Fang X., Chen Y., Wu X., Davies C.H.J. The origins for tensile properties of selective laser melted aluminium alloy A357. Addit. Manuf. 2017. Vol. 17. P. 113—122. DOI: 10.1016/j.addma.2017.08.007.
19. Takata N., Liu M., Kodaira H., Suzuki A., Kobashi M. Anomalous strengthening by supersaturated solid solutions of selectively laser melted Al—Si-based alloys. Addit. Manuf. 2020. Vol. 33. P. 101152, DOI: 10.1016/j.addma.2020.101152.
20. Liu Y., Wang Y., Wu X., Shi J. Nonequilibrium thermodynamic calculation and experimental investigation of an additively manufactured functionally graded material. J. Alloys. Compd. 2020. Vol. 838. P. 155322. DOI: 10.1016/j.jallcom.2020.155322.
21. Marola S., Manfredi D., Fiore G., Poletti M.G., Lombardi M., Fino P., Battezzati L. A comparison of selective laser melting with bulk rapid solidification of AlSi10Mg alloy. J. Alloys. Compd. 2018. Vol. 742. P. 271—279. DOI: 10.1016/j.jallcom.2018.01.309.
22. Liu Y.J., Liu Z., Jiang Y., Wang G.W., Yang Y., Zhang L.C. Gradient in microstructure and mechanical property of selective laser melted AlSi10Mg. J. Alloys. Compd. 2018. Vol. 735. P. 1414—1421. DOI: 10.1016/j.jallcom. 2017.11.020.
23. Yang Y., Chen Y., Zhang J., Gu X., Qin P., Dai N., Li X., Kruth J.-P., Zhang L.-C. Improved corrosion behavior of ultrafine-grained eutectic Al—12Si alloy produced by selective laser melting. Mater. Des. 2018. Vol. 146. P. 239—248. DOI: 10.1016/j.matdes.2018.03.025.
24. Gharbi O., Jiang D., Feenstra D.R., Kairy S.K., Wu Y., Hutchinson C.R., Birbilis N. On the corrosion of additively manufactured aluminium alloy AA2024 prepared by selective laser melting. Corros. Sci. 2018. Vol. 143. P. 93—106. DOI: 10.1016/j.corsci.2018.08.019.
25. Belov N.A., Naumova E.A., Alabin A.N., Matveeva I.A. Effect of scandium on structure and hardening of Al—Ca eutectic alloys. J. Alloys. Compd. 2015. Vol. 646. P. 741— 747. DOI: 10.1016/j.jallcom.2015.05.155.
26. Рогачев С.О., Наумова Е.А., Карелин Р.Д., Андреев В.А., Перкас М.М., Юсупов В.С., Хаткевич В.М. Структура и механические свойства эвтектического алюминиевого сплава Al—Ca—Mn—Fe—Zr—Sc после теплого равноканального углового прессования. Известия вузов. Цветная металлургия. 2021. Т. 27. No. 2. С. 56—65. DOI: 10.17073/0021-3438-2021-2-56-65. Rogachev S.O., Naumova E.A., Karelin R.D., Andreev V.A., Perkas M.M., Yusupov V.S., Khatkevich V.M. Structure and mechanical properties of Al—Ca— Mn—Fe—Zr—Sc eutectic aluminum alloy after warm equal channel angular pressing. Russ. J. Non-Ferr. Met. 2021. Vol. 62. No. 3. P. 293—301. DOI: 10.3103/S1067821221030123.
27. Belov N.A., Batyshev K.A., Doroshenko V.V. Microstructure and phase composition of the eutectic Al—Ca alloy, additionally alloyed with small additives of zirconium, scandium and manganese. Non-Ferr. Met. 2017. No. 2. P. 49—54. DOI: 10.17580/nfm.2017.02.09.
28. Cao Z., Kong G., Che Ch., Wang Y., Peng H. Experimental investigation of eutectic point in Al-rich Al—La, Al—Ce, Al—Pr and Al—Nd systems. J. Rare Earths. 2017. Vol. 35. P. 1022—1028. DOI: 10.1016/S1002-0721(17)61008-1.
29. Akopyan T.K., Belov N.A., Naumova E.A., Letyagin N. New in-situ Al matrix composites based on Al—Ni—La eutectic. Mater. Lett. 2019. Vol. 245. P.110—113. DOI: 10.1016/j.matlet.2019.02.112.
30. Michi R.A., Sisco K., Bahl S., Yang Y., Poplawsky J.D., Allard L.F., Dehoff R.R., Plotkowski A., Shyam A. A creepresistant additively manufactured Al—Ce—Ni—Mn alloy. Acta Mater. 2022. Vol. 227. P. 117699. DOI: 10.1016/j.actamat.2022.117699.
31. Тарасова Т.В., Гвоздева Г.О., Тихонова Е.П. Перспективы использования лазерного излучения для поверхностной обработки цветных сплавов. Вестник МГТУ Станкин. 2012. No. 2. С. 140—143. Tarasova T.V., Gvozdeva G.O., Tihonova E.P. Aspects of use of laser emission for a surface treatment of non-ferrous alloys. Vestnik MGTU Stankin. 2012. No. 2. P. 140—143 (In Russ.).
Review
For citations:
Rogachev S.O., Naumova E.A., Komissarov A.A., Vasina M.A., Pavlov M.D., Tokar’ A.A. Effect of laser surface modification on the structure and mechanical properties of Al–8%Ca, Al–10%La, Al–10%Ce, and Al–6%Ni eutectic aluminum alloys. Izvestiya. Non-Ferrous Metallurgy. 2022;28(6):58-70. (In Russ.) https://doi.org/10.17073/0021-3438-2022-6-58-70