Effect of equal channel angular pressing on the structure and mechanical properties of new Ti–10Mo–8Nb–6Zr β-Ti alloy
https://doi.org/10.17073/0021-3438-2022-6-49-57
Abstract
This paper presents comparative studies of the structural and mechanical properties of the new Ti–10Mo–8Nb–6Zr β-Ti alloy subjected to traditional cold rotary forging and equal channel angular pressing (ECAP) at 250 °C. The main phase in the initial hardened state after forging and ECAP is the BCC β phase. A broadening of the β phase X-ray lines and TEM data indicate a reduction in the structure and an increase in the concentration of lattice defects after deformation treatments. In the initial state, the alloy has an ultimate tensile strength of about 700 MPa, offset yield strength of 450 MPa and elongation at break of ~30 %. As a result of forging, the ultimate tensile strength and offset yield strength of the alloy increase to 1230 and 950 MPa, and after ECAP – to 1280 and 1270 MPa, respectively. At the same time, the elongation is reduced to 6 % after ECAP. A significant increase in the strength of the Ti–10Mo–8Nb–6Zr alloy after ECAP makes it more promising for use in medicine.
Keywords
About the Authors
D. V. GunderovRussian Federation
Dr. Sci. (Phys.-Math.), leading researcher; leading researcher
450054, Ufa, pr. Oktyabrya, 71
450076, Ufa, Zaki Validi str., 32
A. A. Churakova
Russian Federation
Cand. Sci. (Phys.-Math.), research associate; senior researcher
Ufa
A. V. Polyakov
Russian Federation
Cand. Sci. (Eng.), senior researcher; Senior researcher
Ufa
614990, Perm, Komsomolskii pr., 29
A. G. Raab
Russian Federation
Cand. Sci. (Eng.), research associate
Ufa
S. D. Gunderova
Russian Federation
student
Ufa
Yu. A. Lebedev
Russian Federation
Cand. Sci. (Eng.), senior researcher
Ufa
Ana Paula Rosifini Alves Claro
Brazil
prof.
São Paulo
References
1. Brunette D.M., Tengvall P., Textor M., Thomsen P. Titanium in medicine, Berlin: Springer, 2001.
2. Колачев Б.А., Полькин И.С., Талалаев В.Д. Титановые сплавы разных стран: Справочник. М.: ВИЛС, 2000. Kolachev B.A., Polkin I.S., Talalaev V.D. Titanium alloys of different countries: Reference book. Moscow: VILS, 2000 (In Russ.).
3. Хлусов И.А., Пичугин В.Ф., Рябцева М.А. Основы биомеханики биосовместимых материалов и биологических тканей: Учеб. пос. Томск: Изд-во ТПУ, 2007. C. 95—96. Khlusov I.A., Pichugin V.F., Ryabtseva M.A. Fundamentals of biomechanics of biocompatible materials and biological tissues: textbook. Tomsk: Izdatelstvo Tomskogo politekhnicheskogo universiteta, 2007. P. 95—96 (In Russ.).
4. Rho J.Y., Tsui T.Y., Pharr G.M. Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomater. 1997. Vol. 18 (20). P. 1325— 1330.
5. Semlitsch M., Staub F., Webber H. Titanium-aluminumniobium alloy, development for biocompatible, high strength surgical implants. Biomed. Technol. 1985. Vol. 30 (12). P. 334—339.
6. Rack H.J., Qazi J.I. Titanium alloys for biomedical applications. Mater. Sci. Eng. C. 2006. Vol. 26. P. 1269— 1277.
7. Van der Voet G.B., Marani E., Tio S., De Wolff F.A. Aluminum neurotoxicity. Progress in Histochemistry and Cytochemistry. 1991. Vol. 23 (1-4). P. 235—242.
8. Титановые сплавы. Металловедение титана и его сплавов. Под ред. Б.А. Колачева, С.Г. Глазунова. М.: Металлургия, 1992. Kolachev B.A., Glazunov S.G. (eds.). Titanium alloys. Metallology of titanium and its alloys. Moscow: Metallurgiya, 1992 (In Russ.).
9. Nnamchi P.S. First principles studies on structural, elastic and electronic properties of new Ti—Mo—Nb—Zr alloys for biomedical applications. Mater. Design. 2016. Vol. 108. P. 60—67.
10. Bottino M.C., Coelho P.G., Yoshimoto M., König B., Henriques V.A.R., Bressiani A.H.A., Bressiani J.C. Histomorphologic evaluation of Ti—13Nb—13Zr alloys processed via powder metallurgy: A study in rabbits. Mater. Sci. Eng. 2008. Vol. 28. P. 223—227.
11. Chen Y., Xu L., Liu Zn., Kong F., Chen Z. Microstructures and properties of titanium alloys Ti—Mo for dental use. Trans. Nonferr. Met. Soc. China. 2006. Vol. 16. P. 824— 828.
12. Martins J.R.S., Nogueira R.A., Oliveira R., Donato T.A., Elias V., Claro A., Moraes J., Buzalaf M., Grandini C. Preparation and characterization of Ti—15Mo alloy used as biomaterial. Mater. Res. 2011. Vol. 14 (1). P. 107— 112.
13. Konopatsky A.S., Dubinskiy S.M., Zhukova Y.S., Sheremetyev V., Brailovski V., Prokoshkin S.D., Filonov M.R. Ternary Ti—Zr—Nb and quaternary Ti—Zr—Nb—Ta shape memory alloys for biomedical applications: Structural features and cyclic mechanical properties. Mater. Sci. Eng. A. 2017. Vol. 702. P. 301—311. DOI: 10.1016/j.msea.2017.07.046.
14. Kudryashova A., Sheremetyev V., Lukashevich K., Cheverikin V., Inaekyan K., Galkin S., Prokoshkin S., Brailovski V. Effect of a combined thermomechanical treatment on the microstructure, texture and superelastic properties of Ti—18Zr—14Nb alloy for orthopedic implants. J. Alloys Compd. 2020. Vol. 843. 156066. DOI: 10.1016/j.jallcom.2020.P.156066.
15. Sheremetyev V., Kudryashova A., Cheverikin V., Korotitskiy A., Galkin S., Prokoshkin S., Brailovski V. Hot radial shear rolling and rotary forging of metastable beta Ti—18Zr—14Nb (at.%) alloy for bone implants: Microstructure, texture and functional properties. J. Alloys Compd. 2019. Vol. 800. P. 320—326.
16. Валиев Р.З., Александров И.В. Объемные наноструктурные металлические материалы: Получение, структура, свойства. М.: ИКЦ «Академкнига», 2007. Valiev R.Z., Alexandrov I.V. Volumetric nanostructured metallic materials: Preparation, structure, properties. Moscow: Akademkniga, 2007 (In Russ.).
17. Valiev R.Z., Zhilyaev A.P., Langdon T.G. Bulk nanostructured materials: Fundamentals and applications: Hoboken. New Jersey: John Wiley & Sons, Inc., 2014.
18. Семенова И.П., Рааб Г.И., Валиев Р.З. Наноструктурные титановые сплавы: новые разработки и перспективы применения. Российские нанотехнологии. 2014. Т. 9. No. 5-6. С. 84—95. Semenova I.P., Raab G.I., Valiev R.Z. Nanostructural titanium alloys: new developments and application prospects. Rossiiskie nanotekhnologii. 2014. Vol. 9. No. 5-6. P. 84—95 (In Russ.).
19. Valiev R.Z., Semenova I.P., Latysh V.V., Rack H., Lowe T.C., Petruzelka J., Dluhos L., Hrusak D., Sochova J. Nanostructured titanium for biomedical applications. Adv. Eng. Mater. 2008. Vol. 10. P. B15—B17.
20. Gunderov D.V., Polyakov A.V., Semenova I.P., Raab G.I., Churakova A.A., Gimaltdinova E.I., Sabirov I., Segurado J., Sitdikov V.D., Alexandrov I.V., Enikeev N.A., Valiev R.Z. Evolution of microstructure, macrotexture and mechanical properties of commercially pure Ti during ECAP-conform processing and drawing. Mater. Sci. Eng. A. 2013. Vol. 562. P. 128—136.
21. Saitova L.R., Höppel H.W., Göken M., Semenova I.P., Raab G.I., Valiev R.Z. Fatigue behavior of ultrafinegrained Ti—6Al—4V ‘ELI’ alloy for medical applications. Mater. Sci. Eng. A. 2009. Vol. 503. P. 145—147.
22. Гатина С.А., Сулейманов Ф.Г., Семенова И.П. Особенности усталостного разрушения ультрамелкозернистого сплава Ti—15Mо, полученного интенсивной пластической деформацией. Деформация и разрушение материалов. 2015. No. 5. C. 28—34. Gatina S.A., Suleimanov F.G., Semenova I.P. Fatigue fracture features of ultrafine-grained Ti—15Mo alloy produced by severe plastic deformation. Deformatsya i razrushenie materialov. 2015. No. 5. P. 28—34 (In Russ.).
23. Sheremetyev V., Derkach M., Prokoshkin S., Churakova A., Gunderov D., Raab G. Effect of ECAP and annealing on structure and mechanical properties of metastable beta Ti—18Zr—15Nb (at.%) alloy. Mater. Lett. 2021. Vol. 305. P. 130760.
Review
For citations:
Gunderov D.V., Churakova A.A., Polyakov A.V., Raab A.G., Gunderova S.D., Lebedev Yu.A., Rosifini Alves Claro A. Effect of equal channel angular pressing on the structure and mechanical properties of new Ti–10Mo–8Nb–6Zr β-Ti alloy. Izvestiya. Non-Ferrous Metallurgy. 2022;28(6):49-57. (In Russ.) https://doi.org/10.17073/0021-3438-2022-6-49-57