Thermodynamics of the effect of alloying on phase formation during crystallization of aluminum matrix composites with exogenous reinforcement
https://doi.org/10.17073/0021-3438-2022-6-32-41
Abstract
A thermodynamic assessment of the effect of alloying elements (Si, Mg, Cu, Ti) on phase formation processes during the production and liquid-phase processing of cast aluminum matrix composite materials with exogenous reinforcement (Al–SiC, Al–B4C) was carried out. It was shown that without suppressing Al–Si–C and Al4C3 carbide formation in the range of carbon concentrations from 0 to 4.5 wt.%, the equilibrium phase composition of Al–SiC composites in the solid state at 423 to 575 °C lies in the (Al) + Si + Al4SiC4 three-phase region, and the Al4SiC4 ternary carbide is replaced by the Al8SiC7 compound at a temperature below 423 °C. SiC and B4C phases in Al–SiC–Cu and Al–B4C–Cu systems are stable in the entire crystallization range and do not interact with aluminum or copper. In the Al–SiC–Mg system, the crystallization of composites containing more than 0.58 wt.% magnesium ends in the (Al) + Al3Mg2 + SiC + Mg2Si four-phase region. In the Al–SiC–Ti system, the end of crystallization is observed in the (Al) + Al3Ti + SiC three-phase region. In the Al–B4C system, once Al4C3 phase formation is suppressed, aluminum borides are formed with a deviation from the concentrations of elements providing 10 vol.% B4C towards boron increase and free carbon is formed with a deviation towards boron decrease. Under equilibrium conditions, Al–B4C–Si system crystallization ends in the (Al) + B4C + AlB12 + Al8SiC7 four-phase region (at a silicon content of up to 0.67 wt.%, and in the (Al) + Si + AlB12 + Al8SiC7 region at a higher silicon content. In the Al–B4C–Ti system, crystallization ends in the (Al) + TiB2 + B4C three-phase region at a titanium content of less than 0.42 wt.%.
Keywords
About the Authors
E. S. PrusovRussian Federation
Cand. Sci. (Eng.), associate prof., Department of functional and constructional materials technology (FCMT)
600000, Vladimir, Gorkii str., 87
V. A. Kechin
Russian Federation
Dr. Sci. (Eng.), Head of the Department of FCMT
Vladimir
V. B. Deev
China
Dr. Sci. (Eng.), professor of the School of mechanical engineering and automation; chief researcher of the Laboratory «Ultrafine-grained metallic materials», professor of the Department of metal forming
Textile Road, 1, Hongshan District, Wuhan, 430073
119049, Russia, Moscow, Leninkii pr., 4
P. K. Shurkin
Russian Federation
Cand. Sci. (Eng.), engineer, Department of metal forming
Moscow
References
1. Mortensen A., Llorca J. Metal matrix composites. Annu. Rev. Mater. Res. 2010. Vol. 40. P. 243—270. DOI: 10.1146/annurev-matsci-070909-104511.
2. Mavhungu S.T., Akinlabi E.T., Onitiri M.A., Varachia F.M. Aluminum matrix composites for industrial use: Advances and trends. Procedia Manuf. 2017. Vol. 7. P. 178—182. DOI: 10.1016/j.promfg.2016.12.045.
3. Pramanik S., Cherusseri J., Baban N.S., Sowntharya L., Kar K.K. Metal matrix composites: Theory, techniques, and applications. In: Composite Materials (Ed. Kar K.). Berlin, Heidelberg: Springer, 2017. Р. 369—411. DOI: 10.1007/978-3-662-49514-8_11.
4. Прусов Е.С., Панфилов А.А., Кечин В.А. Роль порошковых прекурсоров при получении композиционных сплавов жидкофазными методами. Известия вузов. Порошковая металлургия и функциональные покрытия. 2016. No. 2. С. 47—58. Prusov E.S., Panfilov A.A., Kechin V.A. Role of powder precursors in production of composite alloys using liquidphase methods. Russ. J. Non-Ferr. Met. 2017. Vol. 58. No 3. P. 308—316. DOI: 10.3103/S1067821217030154.
5. Kala H., Mer K.K.S., Kumar S. A review on mechanical and tribological behaviors of stir cast aluminum matrix composites. Proc. Mater. Sci. 2014. Vol. 6. P. 1951—1960. DOI: 10.1016/j.mspro.2014.07.229.
6. Samal P., Vundavilli P.R., Meher A., Mahapatra M.M. Recent progress in aluminum metal matrix composites: A review on processing, mechanical and wear properties. J. Manuf. Process. 2020. Vol. 59. P. 131—152. DOI: 10.1016/j.jmapro.2020.09.010.
7. Prusov E.S., Panfilov A.A. Properties of cast aluminumbased composite alloys reinforced by endogenous and exogenous phases. Russ. Metall. (Met.). 2011. No. 7. P. 670—674. DOI: 10.1134/S0036029511070123.
8. Панфилов А.А., Прусов Е.С., Кечин В.А. Металлургия алюмоматричных композиционных сплавов: Монография. Владимир: Изд-во ВлГУ, 2017. Panfilov A.A., Prusov E.S., Kechin V.A. Metallurgy of aluminum matrix composite alloys: monograph. Vladimir: Vladimirskii gosudarstvennii universitet im. A.G. imeni N.G. Stoletovych, 2017 (In Russ.).
9. Delannay F., Froyen L., Deruyttere A. The wetting of solids by molten metals and its relation to the preparation of metal-matrix composites. J. Mater. Sci. 1987. Vol. 22. P. 1—16.
10. Malaki M., Fadaei Tehrani A., Niroumand B., Gupta M. Wettability in metal matrix composites. Metals. 2021. Vol. 11. Iss. 7. Art. 1034. DOI: 10.3390/met11071034.
11. Eustathopoulos N., Voytovych R. The role of reactivity in wetting by liquid metals: A review. J. Mater. Sci. 2016. Vol. 51. P. 425—437. DOI: 10.1007/s10853-015-9331-3.
12. Hashim J., Looney L., Hashmi M.S.J. The wettability of SiC particles by molten aluminium alloy. J. Mater. Process. Technol. 2001. Vol. 119. P. 324—328. DOI: 10.1016/S0924-0136(01)00975-X.
13. Egry I., Ricci E., Novakovic R., Ozawa S. Surface tension of liquid metals and alloys — Recent developments. Adv. Colloid Interface Sci. 2010. Vol. 159. P. 198—212.
14. Carotenuto G., Gallo A., Nicolais L. Degradation of SiC particles in aluminium-based composites. J. Mater. Sci. 1994. Vol. 29. P. 4967—4974.
15. Chernyshova T.A., Rebrov A.V. Interaction kinetics of boron carbide and silicon carbide with liquid aluminium J. Less-Comm. Met. 1986. Vol. 117. Iss. 1-2. P. 203—207.
16. Pech-Canul M.I., Katz R.N., Makhlouf M.M. Optimum parameters for wetting silicon carbide by aluminum alloys. Metal. Mater. Trans. A: Phys. Metal. Mater. Sci. 2000. Vol. 31. Iss. 2. P. 565—573.
17. Prusov E.S., Deev V.B., Shurkin P.K., Arakelian S.M. The effect of alloying elements on the interaction of boron carbide with aluminum melt. Non-Ferr. Metals. 2021. Vol. 50. No. 1. P. 27—33. DOI: 10.17580/nfm.2021.01.04.
18. Shi R., Luo A.A. Applications of CALPHAD modeling and databases in advanced lightweight metallic materials. Calphad. 2018. Vol. 62. P. 1—17. DOI: 10.1016/j.calphad. 2018.04.009.
19. Jung J.-G., Cho Y.-H., Lee J.-M., Kim H.-W., Euh K. Designing the composition and processing route of aluminum alloys using CALPHAD: Case studies. Calphad. 2019. Vol. 64. P. 236—247. DOI: 10.1016/j.calphad.2018.12.010.
20. Belov N.A., Naumova E.A., Akopyan T.K., Doroshenko V.V. Phase diagram of the Al—Ca—Fe—Si system and its application for the design of aluminum matrix composites. JOM. 2018. Vol. 70. P. 2710—2715. DOI: 10.1007/s11837-018-2948-3.
21. Prusov E., Deev V., Shunqi M. Thermodynamic assessment of the Al—Mg—Si—Ti phase diagram for metal matrix composites design. Mater. Today: Proc. 2019. Vol. 19. Pt. 5. P. 2005—2008. DOI: 10.1016/j.matpr.2019.07.061.
22. Viala J.C., Fortier P., Bouix J. Stable and metastable phase equilibria in the chemical interaction between aluminium and silicon carbide. J. Mater. Sci. 1990. Vol. 25. Iss. 3. P. 1842—1850. DOI: 10.1007/BF01045395.
23. Schuster J.C., Palm M. Reassessment of the binary aluminum-titanium phase diagram. J. Phase Equilib. Diffus. 2006. Vol. 27. P. 255—277. DOI: 10.1361/154770306X109809.
24. Toptan F., Kilicarslan A., Kerti I. The effect of ti addition on the properties of Al—B4C interface: A microstructural study. Mater. Sci. Forum. 2010. Vol. 636—637. P. 192—197. DOI: 10.4028/www.scientific.net/msf.636-637.192.
25. Zhang Z., Fortin K., Charette A., Chen X.-G. Effect of titanium on microstructure and fluidity of Al—B4C composites. J. Mater. Sci. 2011. Vol. 46. P. 3176—3185. DOI: 10.1007/s10853-010-5201-1.
Review
For citations:
Prusov E.S., Kechin V.A., Deev V.B., Shurkin P.K. Thermodynamics of the effect of alloying on phase formation during crystallization of aluminum matrix composites with exogenous reinforcement. Izvestiya. Non-Ferrous Metallurgy. 2022;28(6):32-41. (In Russ.) https://doi.org/10.17073/0021-3438-2022-6-32-41