Comparative studies of the discharge of hydronium ions on zinc, copper and aluminum cathodes
https://doi.org/10.17073/0021-3438-2022-6-22-31
Abstract
Electrochemical reduction of hydrogen (hydronium ion) was carried out on zinc, aluminum and copper cathodes from acidic aqueous solutions containing sulfuric acid (0.09, 0.18 and 0.36 mol/l) to study the effect of electrolyte acidity, the type of cathodes used and potential values on electrolysis indicators. The studies were carried out on the potentiostat using a three-electrode cell under conditions of intensive electrolyte stirring with a magnetic stirrer. At the initial stage, electrolysis was performed in the following modes: potentiodynamic measurements at a sweep rate of 1 mV/s in the potential range Е = –(700÷850) mV on a copper and aluminum electrode and Е = –(1000÷1150) mV on a zinc electrode. In the indicated potential range, hydronium discharge parameters at each cathode were calculated: Tafel slope, apparent transfer coefficients and exchange currents. Dependences of these parameters on electrolyte acidity were considered. Average values of steady state potentials were obtained, which, similar to the apparent exchange current, significantly depended on the cathode material: –923.1 mV (zinc cathode); +36.1 mV (copper cathode), and –603.7 mV (aluminum cathode) (AgCl/Ag). The effect of surfactants on all the kinetic parameters considered was shown. The order of the reaction with and without surfactant additives was determined. At the next stage, the electrochemical parameters of hydronium discharge on the copper electrode only were compared. It was shown that the electrochemical parameters significantly depend on the cathodic potential range where they are determined, and on the methods used for their calculation. It was noted that the process proceeds in the region of mixed kinetics. As the electrode polarization decreases, the hydrogen discharge mechanism changes, while the proportion of electrochemical kinetics will increase in the region of mixed kinetics. We suppose that the data obtained can also be of practical importance for the zinc electrolysis technology. The data obtained in this research on the electrochemical parameters of hydrogen discharge in a wide range of potentials on cathodes made of different metals as well as on the effect of electrolyte acidity on the behavior of surfactants during electrolysis will expand knowledge about the zinc electrolysis technology.
About the Authors
A. V. KolesnikovRussian Federation
Dr. Sci. (Eng.), prof., Department of analytical and physical chemistry
454001, Chelyabinsk, Brat’ya Kashiriny str., 129
E. I. Ageenko
Russian Federation
рostgraduate student, assistant, Department of analytical and physical chemistry
Chelyabinsk
References
1. Пономарев Д.А., Плотникова М.Д., Шеин А.Б., Рубцов А.Е. Исследование защитного действия производных тиазола и тиадиазола на малоуглеродистой стали в растворе соляной кислоты. Вестн. Перм. ун-та. Сер. Химия. 2018. Вып. 3(31). С. 349—359. DOI: 10.17072/2223-1838-2018-3-349-359. Ponomarev D.A., Plotnikova M.D., Shein A.B., Rubtsov A.E. Study of the protective action of thiazole and thiadiazole derivatives on low-carbon steel in hydrochloric acid solution. Vestnik Permskogo universiteta. Ser. Khimiya. 2018. No. 3(31). P. 349—359 (In Russ.).
2. Шейн А.Б., Плотникова М.Д., Рубцов А.Е. Защитные свойства ряда производных тиадиазола в растворах серной кислоты. Известия вузов. Химия и хим. технология. 2019. Т. 62 (7). С. 123—129. DOI: 10.6060/ivkkt.20196207.5968. Shein A.B., Plotnikova M.D., Rubtsov A.E. Protective properties of a number of thiadiazole derivatives in sulfuric acid solutions. Izv. vuzov. Khimiya i khimicheskaya tekhnologiya. 2019. Vol. 62 (7). 123—129 (In Russ.).
3. Вигдорович В.И., Цыганкова Л.Е., Балыбин Д.В., Кичигин В.И., Крыльский Д.В. Кинетика и природа замедленной стадии реакции катодного выделения водорода на железе в водных и водно-этиленгликолевых растворах НСl в присутствии о-фторфенилбигуанидина. Электрохимия. 2013. Т. 49. No. 11. С. 1045— 1052. DOI: 10.7868/S0424857013110133. Vigdorovich V.I., Tsygankova L.E., Balybin D.V., Kichigin V.I., Kryl’Skii D.V. Kinetics and nature of the slow stage of cathodic hydrogen evolution on iron in aqueous and water-ethylene-glycol solutions of HCl in the presence of o-fluorophenylbiguanidine. Russ. J. Electrochemistry. 2013. Vol. 49. No. 11. P. 1045—1052.
4. Мокрушин М.А., Шеин А.Б., Рубцов А.Е. Поиск потенциальных ингибиторов коррозии в ряду серосодержащих органических соединений. Вестн. Перм. ун-та. Сер. Химия. 2017. Т. 27. Вып. 3. C. 271—278. DOI: 10.17072/2223-1838-2017-3-271-278. Mokrushin M.A., Shein A.B., Rubtsov A.E. The search of potential corrosion inhibitors in a series of sulfurcontaining organic substances. Vestnik Permskogo universiteta. Ser. Khimiya. 2017. Vol. 27. No. 3. P. 271—278 (In Russ.).
5. Solmaz R., Anzinger A., Paschen P. Investigation of adsorption and inhibitive effect of 2-mercaptothiazoline on corrosion of mild steel in hydrochloric acid media. Electrochimica Acta. 2008. Vol. 53. No. 20. P. 5941—5952. DOI: 10.1016/j.electacta.2008.03.055.
6. Solmaz R., Anzinger A., Paschen P. Adsorption and corrosion inhibitive properties of 2-amino-5-mercapto-1, 3, 4-thiadiazole on mild steel in hydrochloric acid media. Colloid. Surf. A: Physicochem. Eng. Asp. 2008. Vol. 312. No. 1. P. 7—17. DOI: 10.1016/j.colsurfa.2007.06.035.
7. Балыбин Д.В., Вигдорович В.И., Цыганкова Л.Е., Кузина О.Ю. Влияние пиридина на кинетику реакции выделения водорода на железе в кислых хлоридных растворах. Вестник ТГУ. 2013. Т.18. Вып. 5. С. 2178—2184. Balybin D.V., Vigdorovich V.I., Tsygankova L.E., Kuzina O.Yu. Influence of pyridine on the kinetics of the hydrogen evolution reaction on iron in acidic chloride solutions. Vestnik Tomskogo universiteta. 2013. Vol. 18. Iss. 5. P. 2178—2184 (In Russ.).
8. Deyab M.A. Hydrogen generation during the corrosion of carbon steel in crotonic acid and using some organic surfactants to control hydrogen evolution. Int. J. Hydrogen Energy. 2013. Vol. 38. No. 31. P. 13511—13519. DOI:10.1016/j.ijhydene.2013.08.016.
9. Keera S.T., Deyab M.A. Effect of some organic surfactants on the electrochemical behaviour of carbon steel in formation water. Colloid Surf. A: Physicochem. Eng. Asp. 2005. Vol. 266. No. 1-3. P. 129—140. DOI: 10.1016/j.colsurfa.2005.05.069.
10. Vittal R., Gomathi H., Kim K.J. Beneficial role of surfactants in electrochemistry and in the modification of electrodes. Adv. Colloid Int. Sci. 2006. Vol. 119. No. 1. P. 55—68. DOI: 10.1016/j.cis.2005.09.004.
11. Вигдорович В.И., Цыганкова Л.Е., Балыбин Д.В., Кузина О.Ю., Крыльский Д.В. Влияние о-фторфенилбигуанидина на кинетику реакции выделения водорода на железе и его диффузию через стальную мембрану в водных растворах НСl. Наукоемкие технологии. 2012. Т. 12. No. 11. С. 52—58. Vigdorovich V.I., Tsygankova L.E., Balybin D.V., Kuzina O.Yu., Krylsky D.V. Effect of o-fluorophenylbiguanidine on the kinetics of the hydrogen evolution reaction on iron and its diffusion through a steel membrane in aqueous solutions of HCl. Naukoemkie tekhnologii. 2012. Vol. 12. No. 11. P. 52—58 (In Russ.).
12. Колесников А.В., Козлов П.А. Влияние пиридина на показатели электролиза цинка при различных плотностях тока. Цветные металлы. 2018. No. 8. C. 45—49. DOI: 10.17580/tsm.2018.08.05. Kolesnikov A.V., Kozlov P.A. The effect of pyridine on zinc electrolysis at various current densities. Tsvetnye metally. 2018. No. 8. Р. 45—49 (In Russ.).
13. Козлов П.А., Колесников А.В. Особенности электролиза цинка в присутствии пиридина. Цветные металлы. 2020. No. 5. С. 72—76. Kozlov P.A., Kolesnikov A.V. Features of zinc electrolysis in the presence of pyridine. Tsvetnye metally. 2020. No. 5. P. 72—76 (In Russ.).
14. Колесников А.В., Агеенко Е.И. Особенности разряда цинка в фоновом растворе сульфата натрия в условиях перемешивания. Конденсированные среды и межфазные границы. 2021. Т. 23. No. 2. С. 229—235. DOI: 10.17308/ksmf.2021.23/000. Kolesnikov A.V., Ageenko E.I. Features of the discharge of zinc in a background sodium sulfate solution under stirring conditions. Kondensirovannye sredy i mezhfaznye granitsy. 2021. Vol. 23. No. 2. P. 229—235 (In Russ.).
15. Du J., Gonzalez J.A. A nickel (II) complex of 2, 6-pyridinedicarboxylic acid ion, an efficient electrocatalyst for both hydrogen evolution and oxidation. Molecular Catalysis. 2021. Vol. 516. P. 111947. DOI: 10.1016/j.mcat.2021.111947.
16. Văduva C.C., Centomo Liana, Monteith Gary. Catalytic enhancement of hydrogen evolution reaction on copper in the presence of benzylamine. Int. J. Hydrogen Energy. 2011. Vol. 36. No. 12. P. 6994—7001. DOI :10.1016/j.ijhydene.2011.03.076.
17. Gomes A., da Silva Pereira M.I. Zn electrodeposition in the presence of surfactants: Pt I. Voltammetric and structural studies. Electrochimica Acta. 2006. Vol. 52. No. 3. P. 863—871 DOI: 10.1016/j.electacta.2006.06.025.
18. Gomes A., da Silva Pereira M.I. Pulsed electrodeposition of Zn in the presence of surfactants. Electrochimica Acta. 2006. Vol. 51. No. 7. P. 1342—1350. DOI: 10.1016/j.electacta.2005.06.023.
19. Hosseini S.R., Ghasemi S., Ghasemi S.A. Effect of surfactants on electrocatalytic performance of copper nanoparticles for hydrogen evolution reaction. J. Molec. Liq. 2016. Vol. 222. P. 1068—1075. DOI: 10.1016/j.molliq.2016.08.013.
20. Gürten A.A. The primary study on the effects of primer alcohols on the hydrogen evolution reaction on silver electrode. Int. J. Hydrogen Energy. 2003. Vol. 28. No. 10. P. 1083—1088. DOI: 10.1016/S0360-3199(02)00233-1.
21. Колесников А.В. Электровосстановление цинка из фонового раствора сульфата натрия в присутствии катионных и анионных флокулянтов. Бутлеровские сообщения. 2017. Т. 49. No. 2. С. 130—136. Kolesnikov A.V. Electroreduction of zinc from a background solution of sodium sulfate in the presence of cationic and anionic flocculants. Butlerovskie soobshcheniya. 2017. Vol. 49. No. 2. P. 130—136 (In Russ.).
22. Alfantazi A.M. An investigationthe effects of orhophenylenediamine and sodium lignin sulfonate on zinc electrowinning from industrial electrolyte. Hydrometallurgy. 2003. Vol. 69 (1-3). P. 99—107. DOI: 10.1016/s0304-386x(03)00030-6.
23. Киреев С.Ю., Киреева С.Н. Электроосаждение индия из сульфатного электролита с галогенид-анионами. Изв. вузов. Химия и хим. технология. 2021. Т. 64 (10). С. 53—57. DOI: 10.6060/ivkkt.20216410.6439. Kireev S.Yu., Kireeva S.N. Indium electrodeposition from sulfate electrolyte with halide anions. Izv. vuzov. Khimiya i khimicheskaya tekhnologiya. 2021. Vol. 64 (10). P. 53—57 (In Russ.).
24. Сапронова Л.В., Соцкая Н.В., Долгих О.В. Кинетика электроосаждения никеля из комплексных электролитов, содержащих аминокислоты. Конденсированные среды и межфазные границы. 2013. Т. 15. No. 4. С. 446—452. Режим доступа: https://journals.vsu.ru/kcmf/article/view/933/1015. Sapronova L.V., Sotskaya N.V., Dolgikh O.V. Kinetics of nickel electrodeposition from complex electrolytes containing amino acids. Kondensirovannye sredy i mezhfaznye granitsy. 2013. Vol. 15. No. 4. P. 446—452 (In Russ.).
25. Колесников А.В., Агеенко Е.И. Разряд ионов гидроксония на металлических катодах в присутствии пиридина. Бутлеровские сообщения. 2020. Т. 63. No. 8. С. 58—63. DOI: 10.37952/ROI-jbc-01/20-63-8-58. Kolesnikov A.V., Ageenko E.I. The effect of pyridine on the electrochemical parameters of the hydroxonium discharge at the copper cathode. Butlerovskie soobshcheniya. 2019. Vol. 60. No. 12. P. 58—63 (In Russ.).
26. Эткинс П.У. Физическая химия. Т. 2. М.: Мир, 1980. Atkins P.U. Physical chemistry. Vol. 2. Moscow: Mir, 1980 (In Russ.).
27. Скорчеллетти В.В. Теоретическая электрохимия. 4-е изд. Л.: Химия, 1974. Skorchelletti V.V. Teoreticheskaya elektrokhimiya. 4 izd. Leningrad: Khimiya, 1974 (In Russ.).
28. Dickinson E.J.F., Wain A.J. The butler-volmer equation in electrochemical theory: Origins, value, and practical application. J. Electroanal. Chem. 2020. Vol. 872. P. 114145. DOI: 10.1016/j.jelechem.2020.114145.
29. Kear G., Walsh F.C. The characteristics of a true Tafel slope. Corros. Mater. 2005. Vol. 30. No. 6. P. 51—55.
30. Murthy A.P., Theerthagiri J., Madhavan J. Insights on Tafel constant in the analysis of hydrogen evolution reaction. J. Phys. Chem. C. 2018. Vol. 122. No. 42. P. 23943— 23949. DOI: 10.1021/acs.jpcc.8b07763.
31. Кришталик Л.И. Электродные реакции. Механизм элементарного акта. М.: Наука, 1982. Krishtalik L.I. Electrode reactions. The mechanism of an elementary act. Moscow: Nauka, 1982 (In Russ.).
Review
For citations:
Kolesnikov A.V., Ageenko E.I. Comparative studies of the discharge of hydronium ions on zinc, copper and aluminum cathodes. Izvestiya. Non-Ferrous Metallurgy. 2022;28(6):22-31. (In Russ.) https://doi.org/10.17073/0021-3438-2022-6-22-31