Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Optimization of converting process for matte of oxidized nickel ores and sulfide copper ores joint smelting based on thermodynamic simulation

https://doi.org/10.17073/0021-3438-2022-6-12-21

Abstract

The paper presents the results obtained in the thermodynamic modeling of converting copper-nickel matte (11.3 wt.% Ni + Cu + + Co, 61.5 wt.% Fe, 25.9 wt.% S) produced by joint smelting of oxidized nickel ore and sulfide copper ore. Calculations were made in the approximation of ideal molecular solutions using the HSC Chemistry software package (Outotec Research Oy, Finland). The possibility of low-iron matte, converter slag and gas phase separation was shown. Estimated conditional equilibrium constants of exchange reactions between low-iron matte and slag (KNi/Fe = 0.004÷0.005, KCo/Fe = 0.056÷0.099) are close to ideal values. Statistical data processing was carried out using the mathematical experiment planning method. The converting temperature (t = 1100÷1300 °C) and iron and sulfur oxidation completeness level (q = 0.9÷1.0) determining the air and flux (SiO2) consumption were chosen as the factors to study. Obtained mathematical models of the process were used for its optimization. It was shown that the best converting performance can be achieved at t = 1150 °С and q = 0.950 when the low-iron matte contains 70.7 wt.% Ni + Cu + Co. At a yield of 8.74 % of the charge mass, the nickel, copper and cobalt recovery rates are 67.9, 97.9 and 9.1 %, respectively. The supposed air consumption (145.1 m3 (under normal conditions) per 100 kg of matte) and SiO2 (34.4 kg per 100 kg of matte) as well as slag yield (89.1 % of the charge mass) are close to working regime parameters. The results of the study confirm the possibility of cost-effective processing of poor copper-nickel matte and after experimental verification they can be used to develop automation flowcharts for converter departments at existing and designed production facilities.

About the Authors

A. M. Klyushnikov
Institute of metallurgy of the Ural branch of the Russian Academy of Sciences (IMET UB RAS)
Russian Federation

Cand. Sci. (Eng.), senior research scientist of Laboratory of non-ferrous metals pyrometallurgy

620016, Ekaterinburg, Amundsen str., 101 



G. I. Maltsev
Institute of metallurgy of the Ural branch of the Russian Academy of Sciences (IMET UB RAS)
Russian Federation

Dr. Sci. (Eng.), senior research scientist of Laboratory of non-ferrous metals pyrometallurgy

Ekaterinburg



References

1. Зайков В.В., Мелекесцева И.Ю. Кобальт-медноколчеданные месторождения в ультрамафитах аккреционной призмы Западно-Магнитогорской палеоостровной дуги. Литосфера. 2005. No. 3. С. 73—98. Zaikov V.V., Melekestseva I.Yu. Cobalt-copper-pyrite deposits in ultramafic accretionary prism of the West Magnitogorsk paleo-island arc. Litosfera. 2005. No. 3. P. 73—98 (In Russ.).

2. Селиванов Е.Н., Гуляева Р.И., Клюшников А.М. Исследование структуры и фазового состава медно-кобальтовых сульфидных руд Дергамышского месторождения. Цветные металлы. 2016. No. 3 (879). С. 13—17. DOI: 10.17580/tsm.2016.03.02. Selivanov E.N., Gulyaeva R.I. Klyushnikov A.M. Study of structure and phase composition of copper-cobalt sulfide ores of Dergamyshskoe deposit. Tsvetnye Metally. 2016. No. 3. Р. 13—17 (In Russ.).

3. Schlesinger M., Sole K., Davenport W. Extractive metallurgy of copper. 5th ed. Oxford: Elsevier, 2011.

4. Shamsuddin M., Sohn H.Y. Constitutive topics in physical chemistry of high-temperature nonferrous metallurgy — A review: Pt. 1. Sulfide roasting and smelting. JOM. 2019. Vol. 71. No. 9. P. 3253—3265. DOI: 10.1007/s11837-019-03620-7.

5. Luganov V.A., Shabalin V.I. Thermal dissociation of pyrite during processing of pyrite-containing raw materials. Canadian Metallurgical Quarterly. 1994. Vol. 33. No. 3. P. 169—174. DOI: 10.1179/cmq.1994.33.3.169.

6. Нагаева С.П., Мезенцева О.П., Козорез М.В. Минералогические исследования медных кобальтсодержащих руд Дергамышского месторождения. Горный журнал. 2014. No. 11. С. 31—35. Nagaeva S.P., Mezentseva O.P., Kozorez M.V. Mineralogical research of copper cobalt-containing ores of Dergamysh deposit. Gornyi zhurnal. 2014. No. 11. P. 31—35 (In Russ.).

7. Резник И.Д., Соболь С.И., Худяков В.М. Кобальт. Т. 1. М.: Машиностроение, 1995. Reznik I.D., Sobol’ S.I., Khudyakov V.M. Cobalt. Vol. 1. Moscow: Mashinostroenie, 1995 (In Russ.).

8. Халезов Б.Д. Кучное выщелачивание медных и медно-цинковых руд. Екатеринбург: РИО УрО РАН, 2013. Khalezov B.D. Heap leaching of copper and copper-zinc ores. Ekaterinburg: RIO UrO RAN, 2013 (In Russ.).

9. Meshram P., Abhilash, Pandey B.D. Advanced review on extraction of nickel from primary and secondary sources. Miner. Proces. Extract. Metal. Rev. 2008. DOI: 10.1080/08827508.2018.1514300.

10. Crundwell F.K., Moats M.S., Ramachandran V., Robinson T.G., Davenport W.G. Extractive metallurgy of nickel, cobalt and platinum-group metals. Oxford: Elsevier, 2011.

11. Dunn J.G, Jayaweera S.A.A. Effect of heating rate on the TG curve during the oxidation of nickel sulphide concentrates. Thermochimica Acta. 1983. Vol. 61. P. 313—317.

12. Кожахметов С.М., Квятковский С.А., Султанов М.К., Тулегенова З.К., Семенова А.С. Переработка окисленных медных руд и сульфидных медных концентратов Актогайского месторождения пирометаллургическими способами. Комплексное использование минерального сырья. 2018. No. 3. С. 54—62. DOI: 10.31643/2018/6445.18. Kozhakhmetov S.M., Kvyatkovskii S.A., Sultanov M.K., Tulegenova Z. K., Semenova A.S. Processing of oxidized copper ores and sulfide copper concentrates from the Aktogay deposit by pyrometallurgical methods. Kompleksnoe ispol’zovanie mineral’nogo syr’ya. 2018. No. 3. P. 54—62 (In Russ.).

13. Izydorczyk G., Mikula K., Skrzypczak D., Moustakas K., Witek-Krowiak A., Chojnacka K. Potential environmental pollution from copper metallurgy and methods of management. Environmental Res. 2021. Vol. 197. Р. 111050. DOI: 10.1016/j.envres.2021.111050.

14. Everaert M., Lemmens V., Atia T.A., Spooren J. Sulfidic mine tailings and marl waste rock as compatible resources in a microwave-assisted roasting process. J. Clean. Product. 2020. Vol. 274 122628. DOI: 10.1016/j.jclepro.2020.122628.

15. Селиванов Е.Н., Клюшников А.М., Чумарёв В.М., Гуляева Р.И. Шихта для восстановительно-сульфидирующей плавки окисленных никелевых руд: Пат. 2657267 (РФ). 2018. Selivanov E.N., Klyushnikov A.M., Chumarev V.M., Gulyaeva R.I. Mixture for reduction-sulfidation smelting of oxidized nickel ores: Pat. 2657267 (RF). 2018 (In Russ.).

16. Селиванов Е.Н., Клюшников А.М., Гуляева Р.И. Применение продуктов окислительного обжига сульфидных медных руд в качестве сульфидизатора при плавке на штейн никелевого сырья. Металлург. 2019. No. 8. С. 83—90. Selivanov E.N., Klyushnikov A.M., Gulyaeva R.I. Application of sulfide copper ores oxidizing roasting products as sulfidizing agent during melting nickel raw materials to matte. Metallurgist. 2019. Vol. 63. No. 7—8. P. 867—877.

17. Sun Q., Cheng H., Mei X, Liu Y., Li G., Xu Q., Lu X. Efficient synchronous extraction of nickel, copper, and cobalt from low—nickel matte by sulfation roasting—water leaching process. Scientific Reports. 2020. Vol. 10. 9916. DOI: 10.1038/s41598-020-66894-x.

18. Roine A. HSC Chemistry, Version 6.12 for Windows, Outotec Research Oy. Pori, Finland, 1974—2007.

19. Агеев Н.Г., Набойченко С.С. Металлургические расчеты с исплользованием пакета прикладных программ HSC Chemistry. Екатеринбург: Изд-во Уральского ун-та, 2016. Ageev N.G., Naboichenko S.S. Metallurgical calculations using the HSC Chemistry software. Ekaterinburg: Izdatel’stvo Ural’skogo universiteta, 2016 (In Russ.).

20. Yu D., Utigard T.A. TG/DTA study on the oxidation of nickel concentrate. Thermochimica Acta. 2012. Vol. 533. P. 56—65. DOI: 10.1016/j.tca.2012.01.017.

21. Souza R., Queiroz C., Brant J., Brocchi E. Pyrometallurgical processing of a low copper content concentrate based on a thermodynamic assessment. Miner. Eng. 2019. Vol. 130. P. 156—164. DOI: 10.1016/j.mineng.2018.10.015.

22. Wan X., Shi J., Taskinen P., Jokilaakso A. Extraction of copper from copper-bearing materials by sulfation roasting with SO2—O2 gas. JOM. 2020. Vol. 72. No. 10. Р. 3436—3446. DOI: 10.1007/s11837-020-04300-7.

23. Wilkomirsky I., Parra R., Parada F., Balladares E., Seguel E., Etcheverry J., Díaz R. Thermodynamic and kinetic mechanisms of bornite/chalcopyrite/magnetite formation during partial roasting of high-arsenic copper concentrates. Metal. Mater. Trans. B. 2020. Vol. 51B. Р. 1540. DOI: 10.1007/s11663-020-01870-4.

24. Božinović K., Štrbac N.; Mitovski A., Sokić M., Minić D., Marković B., Stojanović J. Thermal decomposition and kinetics of pentlandite-bearing ore oxidation in the air atmosphere. Metals. 2021. Vol. 11. Р. 1364. DOI: 10.3390/met11091364.

25. Клюшников А.М., Селиванов Е.Н. Термодинамическое моделирование совместной переработки окисленной никелевой и сульфидной медной руд. Бутлеровские сообщения. 2017. Т. 49. No. 1. С. 34—42. Klyushnikov A.M., Selivanov E.N. Thermodynamic modeling of the joint processing of oxidized nickel ores and sulfide copper-bearing ores. Butlerovskie soobshcheniya. 2017. Vol. 49. No. 1. P. 34—42. https://butlerov.com/files/reports/2019/vol58/5/110/19-58-5-110.pdf (In Russ.).

26. Swinbourne D.R., Yazawa A., Barbante G.G. Thermodynamic modeling of selenide matte converting. Metal. Mater. Trans. B. 1997. Vol. 28. P. 811—819. DOI: 10.1007/s11663-997-0008-4.

27. Swinbourne D.R., Kho T.S. Computational thermodynamics modeling of minor element distributions during copper flash converting. Metal. Mater. Trans. B. 2012. Vol. 43. P. 823—829. DOI: 10.1007/s11663-012-9652-4.

28. Малышев В.П. Математическое планирование металлургического и химического эксперимента. Алма-Ата: Наука, 1977. Malyshev V.P. Mathematical planning of metallurgical and chemical experiment. Alma-Ata: Nauka, 1977 (In Russ.).

29. Warner A.E.M., Diaz C.M., Dalvi A.D., Mackey P.J., Tarasov A.V., Jones R.T. World nonferrous smelter survey. Pt. IV: Nickel: Sulfide. JOM. 2007. Vol. 59 P. 58—72. DOI: 10.1007/s11837-007-0056-x.

30. Гудима Н.В., Карасев Ю.А. Кистяковский Б.Б., Колкер П.Е., Равданис Б.И. Технологические расчеты в металлургии цветных металлов. М.: Металлургия, 1977. Gudima N.V., Karasev Yu.A. Kistyakovskii B.B., Kolker P.E., Ravdanis B.I. Technological calculations in the metallurgy of non-ferrous metals. Moscow: Metallurgiya, 1977 (In Russ.).


Review

For citations:


Klyushnikov A.M., Maltsev G.I. Optimization of converting process for matte of oxidized nickel ores and sulfide copper ores joint smelting based on thermodynamic simulation. Izvestiya. Non-Ferrous Metallurgy. 2022;28(6):12-21. (In Russ.) https://doi.org/10.17073/0021-3438-2022-6-12-21

Views: 496


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)