Pyrometallurgical processing of deactivated nickel catalysts on Al2O3 carrier
https://doi.org/10.17073/0021-3438-2022-6-4-11
Abstract
The paper considers the use of deactivated nickel-containing catalysts based on Al2O3 as a significant raw material resource of one of the most important metals. The research highlights the features of this secondary nickel source that determine the acceptable methods of processing such raw materials. The effect of fluxing additives on the properties of the melt containing catalysts prepared beforehand has been studied subject to limitations as to their list (lime, fluorspar) in order to implement a pyrometallurgical method of metal extraction featuring by a relatively small amount of additives themselves. Due to induction heating used in combination with a graphite crucible, adding the total amount of fluorspar and marble additives close in mass made it possible to obtain the melt at a temperature slightly higher than the nickel melting temperature. In this case, the level of metal losses was about 2 %, which indicates the applicability of this method in laboratory conditions to ensure correct incoming analysis. It was proposed to use the pyrometallurgical method on an industrial scale using closed arc heating. To confirm this conclusion, experiments were conducted with a representative (more than 100 kg) amount of catalyst using a tailored arc furnace. Graphite chips were used as a reducing agent. The necessity of electrical matching of the load with the power source resulted in some adjustment of the fluxing additive ratio towards a reduction of calcium oxide content. As a result of a series of experiments, nickel with an up to 5 % iron admixture, similar in composition to the metal formed in the graphite crucible, was obtained. The presence of iron was caused by the fundamentally distinctive capability of the pyrometallurgical technology to reduce unstable compounds. Therefore it was suggested to use this metal for ferronickel production. The use of scarce fluorspar is justified by the fact that the resulting slag can be in demand in the production of fluxes for the electroslag remelting process.
About the Authors
A. I. DemidovRussian Federation
Dr. Sci. (Chem.), professor of the Higher School of Physics and Technology of Materials (HSPTM)
195251, St.-Petersburg, Politekhnicheskaya str., 29
A. V. Kalmykov
Russian Federation
lead engineer of HSPTM
St.-Petersburg
I. A. Matveev
Russian Federation
Cand. Sci. (Eng.), associate professor of HSPTM
St.-Petersburg
V. K. Shevchuk
Russian Federation
Cand. Sci. (Eng.), senior lecturer of HSPTM
St.-Petersburg
References
1. Голосман Е.З., Ефремов В.Н. Промышленные катализаторы гидрирования оксидов углерода. Катализ в промышленности. 2012. No. 5. С. 36—55. Golosman E.Z., Efremov V.N. Industrial catalysts for the carbon oxides hydrogenation. Kataliz v promyshlennosti. 2012. No. 5. P. 36—55 (In Russ.).
2. Резник И.Д., Ермаков Г.П., Шнеерсон Я.М. Никель. Развитие никелевой промышленности в СССР. Подготовка руд и концентратов к металлургическому переделу. Т. 1. Обогащение окисленных никелевых руд. М.: Наука и технологии, 2000. Reznick I.D. Ermakov G.P., Shneerson Y.M. Nickel. Development of the nickel industry in the USSR. Preparation of ores and concentrates for metallurgical processing. Vol. 1. Enrichment of oxidized nickel ores. Mosсow: Nauka i tekhnologii. 2000 (In Russ.).
3. Бурлов В.В., Алцыбеева А.И., Парпуц И.В. Защита от коррозии оборудования НПЗ. СПб.: Химиздат, 2005. Burlov V.V., Alcybeeva A.I., Parpuc I.V. Corrosion protection of equipment NPZ. Sankt-Peterburg: Khimizdat, 2005 (In Russ.).
4. Мечев В.В., Быстров В.П., Тарасов А.В., Гречко А.В., Мазурчук Э.Н. Автогенные процессы в цветной металлургии. М.: Металлургия, 1991. Mechev V.V., Bystrov V.P., Tarasov A.V., Grechko A.V., Mazurchuk E.N. Autogenic processes in non-ferrous metallurgy. Moscow: Metallurgiya, 1991 (In Russ.).
5. Цымбулов Л.Б., Князев М.В., Цемехман Л.Ш., Кудабаев Е.А., Головлев. Ю.И. Анализ различных вариантов технологической схемы переработки окисленных никелевых руд на ферроникель с применением двухзонной печи Ванюкова. Цветные металлы. 2010. No. 10. С. 15—21. Tsymbulov L.B., Knyazev M.V., Tsemekhman L.Sh., Kudabaev E.A., Golovlev Yu.I. The analysis of various variants of the technological scheme of processing of oxidized nickel ores on ferronickel with application of dual chamber vanukov furnace. Tsvetnye metally. 2010. No. 10. P. 15—21 (In Russ.).
6. Matinde E., Simate G.S., Ndlovu S. Mining and metallurgical wastes: a review of recycling and re-use practices. J. S. Afr. Inst. Min. Metall. 2018. Vol. 118. No. 8. P. 825— 844.
7. Чукин Г.Д. Строение оксида алюминия и катализаторов гидрообессеривания. Механизмы реакций. М.: Типография Паладин, 2010. Chukin G.D. The structure of aluminum oxide and hydro desulfurization catalysts. Mechanisms of reactions. Moscow: Tipografiya Paladin, 2010 (In Russ.).
8. Fittok J. QNI limited cobalt refinery — process development, installation and operation. In: Proc. 36-th Сonference of metallurgists of CIM (Nickel-Cobalt 97). Vol. 1. Hydrometallurgy and refining of nickel and cobalt. Québec City, Canada, 1997. P 329—338.
9. Букин В.И., Игумнов М.С., Сафонов В.В., Сафонов Вл.В. Переработка производственных отходов и вторичных сырьевых ресурсов, содержащих редкие, благородные и цветные металлы. М.: Издательский дом «Деловая столица», 2002. Bukin V.I., Igumnov M.S., Safonov V.V., Safonov Vl.V. Processing of industrial waste and secondary raw materials containing rare, precious and non-ferrous metals. Moscow: Izdatel’skii dom «Delovaya stolitsa», 2002 (In Russ.).
10. Hidayat T., Rhamdhani M.A., Jak E., Hayes P.C. Mechanisms and kinetics of nickel oxide reduction in hydrogen and implications for industrial practice. Met. Soc. Pyrometallurgy of Nickel and Cobalt. 2009. P. 591—600.
11. Вольский А.Н., Сергиевская Е.М. Теория металлургических процессов. М.: Металлургия, 1978. Volsky A.N., Sergievskaya E.M. Theory of metallurgical processes. Moscow: Metallurgiya, 1978 (In Russ.).
12. Goodall G. Nickel recovery from reject laterite. Montreal. Canada: Department of Metals and Materials Engineering McGill University, 2007.
13. Калмыков А.В., Карасев В.П. Способ разделения многокомпонентного материала, содержащего металлические компоненты: Пат. 2201978 (РФ). 2003. Kalmykov A.V., Karasev V.P. Method of separation of multicomponent material containing metal components. Pat. 2201978 (RF). 2003 (In Russ.).
14. Plascencia G., Utigard T., Vahed A. Effect of morphology on the reducibility of commercial nickel oxides. Met. Soc. Pyrometallurgy of Nickel and Cobalt. 2009. P. 533— 542.
15. Pakhomov R.A., Starykh R.V. Preliminary reduction of oxidized nickel ores. Russ. Metall. (Metally). 2014. No. 11. P. 853—860.
16. Pakhomov R.A., Starykh R.V. Melting of oxidized nickel ores in a barbotage unit: I. Thermodynamic analysis of melting. Russ. Metall. (Metally). 2015. No. 9. P. 675—684.
17. Zevgolis E.N., Zografidis C. Phase transformations of nickeliferous laterites during preheating and reduction with carbon monoxide. J. Therm. Anal. Calorimetry. 2009. P. 133—139.
18. Mills C., Keene B.J. Physicochemical properties of molten CaF2 — based slags. Inter. Met. Rev. 1981. Vol. 26. No. 1. P. 21—69.
19. King M.G. Nickel laterite technology — finally a new dawn? JOM. 2005. Vol. 57. P. 35—39.
20. Lis T., Nowacki K., Elichowska M., Kania H. Innovation in metallurgical waste management. Metalurgiya. 2015. Vol. 54. No. 1. P. 283—285.
21. Проворова И.Б., Комаров О.С., Барановский К.Э., Волосатиков В.И. Технологии легирования чугунов через шлаковую фазу с использованием отработанных никель- и медьсодержащих катализаторов. Литье и металлургия. 2015. No. 2. С. 58—63. Provorova I.B., Komarov O.S., Baranovski K.E., Volosatikov V.I. Technologies of doping of cast iron through the slag phase with using of the spent nickel- and coppercontaining catalysts. Litiyo i metallurgiya. 2015. No. 2. P. 58—63 (In Russ.).
22. ГОСТ 30756-2001. Флюсы для электрошлаковых технологий: Общие технические условия. М.: ИПК Издательство стандартов, 2001. GOST 30756-2001. Fluxes for electroslag technologies: General technical conditions. Moscow: Izdatelstvo Standartov, 2001 (In Russ.).
Review
For citations:
Demidov A.I., Kalmykov A.V., Matveev I.A., Shevchuk V.K. Pyrometallurgical processing of deactivated nickel catalysts on Al2O3 carrier. Izvestiya. Non-Ferrous Metallurgy. 2022;28(6):4-11. (In Russ.) https://doi.org/10.17073/0021-3438-2022-6-4-11