Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Influence of heating and cooling routes on the isothermal β → ω transition in Ti–22Nb–6Zr alloy

https://doi.org/10.17073/0021-3438-2022-5-78-84

Abstract

The influence of heating and cooling routes prior to the Ti–22Nb–6Zr (at.%) shape memory alloy ageing on the intensity of the isothermal ωiso phase formation in the temperature range from 250 to 350 °C for 1 and 3 h was studied by X-ray diffraction. It was shown that for intensive ωiso phase formation, the most efficient scheme for entering the ageing interval includes rapid water cooling to the room temperature from the annealing temperature of 600 °C and subsequent rapid heating to the ageing temperature of 300 °C. All other schemes used for entering the aging interval including slow cooling and/or heating do not lead to the formation of any X-ray identifiable ωiso phase amount. Whereas, the β → ωiso transition in the temperature range from 250 to 350 °C has a pronounced C-shaped kinetics with a maximum at 300 °C. When aged in the entire range of t = 250÷350 °С, the alloy features higher durability and hardness compared to the initial state. Moreover, the hardness gradually increases with an increase in the ageing temperature from 250 to 300 °C and remains constant in the temperature range of t = 300÷350 °С. The β phase lattice parameter of the Ti–22Nb–6Zr alloy remains unchanged over the entire aging temperature range of 250–350 °C, which indicates the absence of noticeable diffusion element redistribution in the solid solution during the ωiso phase formation. The ωiso phase formed during the Ti–22Nb–6Zr alloy ageing over the entire temperature range of t = 250÷350 °С has the ratio сω /аω = 0.613 ± 0.002, which is similar to the сω /аω ratio for the shear-type athermal ωath phase, which in turn further emphasizes the identity of these two phase varieties.

About the Authors

S. M. Dubinskiy
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Dubinskiy S.M. – Cand. Sci. (Eng.), leading researcher of Metal forming department

119049, Moscow, Leninkiy pr., 4



A. P. Baranova
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Baranova A.P. – postgraduate student of Metal forming department of NUST «MISIS»

119049, Moscow, Leninkiy pr., 4



V. Brailovski
Ecole de Technologie Superieure
Canada

Brailovski V. – Cand. Sci. (Eng.), prof.

1100, rue Notre-Dame Ouest Montreal (Québec) H3C 1K3



References

1. Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedical applications. J. Mech. Behav. Biomed. Mater. 2008. No. 1. P. 30—42.

2. Biesiekierski A., Wang J., Abdel-Hady Gepreel M., Wen C. A new look at biomedical Ti-based shape memory alloys. Acta Biomater. 2012. No. 8. P. 1661—1669.

3. Bönisch M., Calin M., Waitz T., Panigrahi A., Zehetbauer M., Gebert A., Skrotzki W., Eckert J. Thermal stability and phase transformations of martensitic Ti—Nb alloys. Sci. Technol. Adv. Mater. 2013. No. 14 (5). Р. 55004.

4. Aeby-Gautier E., Settefrati A., Bruneseaux F., Appolaire B., Denand B., Dehmas M., Geandier G., Boulet P. Isothermal α″ formation in β metastable titanium alloys. J. Alloys Compd. 2013. No. 577. P. 5439—5443.

5. Kim H.Y., Fu J., Tobe H., Kim J.Il., Miyazaki S. Crystal structure, transformation strain, and superelastic property of Ti—Nb—Zr and Ti—Nb—Ta alloys. Shape Memory Superelast. 2015. No. 1. P. 107—116.

6. Niinomi M. Metals for biomedical devices. Woodhead Publ., 2019.

7. Hao Y.L., Li S.J., Sun S.Y., Yang R. Effect of Zr and Sn on Young’s modulus and superelasticity of Ti—Nb-based alloys. Mater. Sci. Eng. A. 2006. Vol. 441. Р. 112—118.

8. Kim J. Il, Kim H.Y., Inamura T., Hosoda H., Miyazaki S. Shape memory characteristics of Ti—22Nb—(2—8) Zr (at.%) biomedical alloys. Mater. Sci. Eng. A. 2005. No. 403. P. 334—339.

9. Gasik M.M., Yu H. Phase equilibria and thermal behavior of the biomedical Ti—Nb—Zr alloy. Mater. Sci. 2009. RM 29.

10. Camilo A., Salvador F., Opini V.C., Mello M.G., Caram R. Effects of double-aging heat-treatments on the microstructure and mechanical behavior of an Nb-modified Ti-5553 alloy. Mater. Sci. Eng. A. 2019. Vol. 782. P. 137—142.

11. Dubinskiy S., Markova G., Baranova A., Vvedenskiy V., Minkova I., Prokoshkin S., Brailovski V. A non-typical Elinvar effect on cooling of a beta Ti—Nb—Zr alloy. Mater. Lett. 2022. No. 314. P. 131870.

12. Li Q., Niinomi M., Nakai M., Cui Z., Zhu S., Yang X. Effect of Zr on super-elasticity and mechanical properties of Ti—24at.%Nb—(0, 2, 4)at.%Zr alloy subjected to aging treatment. Mater. Sci. Eng. A. 2012. Vol. 536. P. 197—206.

13. Wang K., Wu D., Wang D., Deng Z., Tian Y., Zhang L., Liu L. Influence of cooling rate on ω phase precipitation and deformation mechanism of a novel metastable β titanium alloy. Mater. Sci. Eng. A. 2022. Vol. 829. P. 142—151.

14. Tang X., Ahmed T., Rack H.J. Phase transformations in Ti—Nb—Ta and Ti—Nb—Ta—Zr alloys. J. Mater. Sci. 2000. Vol. 35. P. 1805—1811.

15. Hickman B.S. The formation of omega phase in titanium and zirconium alloys: A review. J. Mater. Sci. 1969. Vol. 4. P. 554—563.

16. Devaraj A., Williams A., Nag S., Srinivasan R., Fraser H.L., Banerjee R. Three-dimensional morphology and composition of omega precipitates in a binary titanium—molybdenum alloy. Scr. Mater. 2009. Vol. 61. P. 701—704.

17. Kim H.Y., Kim J.I., Inamura T., Hosoda H., Miyazaki S. Effect of thermo-mechanical treatment on mechanical properties and shape memory behavior of Ti—(26—28) at.% Nb alloys. Mater. Sci. Eng. A. 2006. Vol. 438—440. P. 839—843.

18. Hao Y.L., Li S.J., Sun S.Y., Yang R. Effect of Zr and Sn on Young’s modulus and superelasticity of Ti—Nb-based alloys. Mater. Sci. Eng. A. 2006. Vol. 441. Р. 112—118.

19. Dubinskiy S.M., Prokoshkin S.D., Brailovski V., Inaekyan K.E., Korotitskiy A.V., Filonov M.R., Petrzhik M.I. Structure formation during thermomechanical processing of Ti—Nb—(Zr, Ta) alloys and the manifestation of the shape-memory effect. Phys. Met. Metallography. 2011. Vol. 112. Р. 503—516.

20. Inaekyan K., Brailovski V., Prokoshkin S., Pushin V., Dubinskiy S., Sheremetyev V. Comparative study of structure formation and mechanical behavior of age-hardened Ti— Nb—Zr and Ti—Nb—Ta shape memory alloys. Mater. Charact. 2015. Vol. 103. P. 65—74.

21. Dubinskiy S., Korotitskiy A., Prokoshkin S., Brailovski V. In situ X-ray diffraction study of athermal and isothermal omega-phase crystal lattice in Ti—Nb-based shape memory alloys. Mater. Lett. 2016. Vol. 168. P. 155—157.


Review

For citations:


Dubinskiy S.M., Baranova A.P., Brailovski V. Influence of heating and cooling routes on the isothermal β → ω transition in Ti–22Nb–6Zr alloy. Izvestiya. Non-Ferrous Metallurgy. 2022;(5):78-84. (In Russ.) https://doi.org/10.17073/0021-3438-2022-5-78-84

Views: 375


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)