Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Self-propagating high-temperature synthesis of heterophase materials in the Zr–Mo–Si–B system. Kinetics and mechanisms of combustion and structure formation

https://doi.org/10.17073/0021-3438-2022-5-66-77

Abstract

The paper focuses on the study of the combustion kinetics and mechanisms of elemental mixtures in the Zr–Mo–Si–B system, as well as the analysis of phase and structural transformation stages in the combustion wave. A thermodynamic analysis of potential chemical reactions occurring in the combustion wave was carried out. The reaction of ZrB2 formation is preferred in the range of 298–2500 K. Above 2200 K, the formation of MoB becomes more thermodynamically advantageous as compared to MoSi2. Phase stability estimates of combustion products showed that ZrB2, MoSi2 and MoB phases are in equilibrium. Experimental dependences Тc(Т0) and Uc(Т0) are linear, which implies an unchanged combustion mechanism at T0 = 298÷800 K. Preheating leads to an increase in Uc. Similarly, an increase in the proportion of Zr and B in the mixture has a similar effect, i.e. an increase in heat emission and Tc. With a minimum content of Zr and B, the interaction between Mo and Si with the formation of MoSi2 by the reaction diffusion mechanism is decisive. As the proportion of Zr and B increases, the rise of T0 to 750 K does not affect the Tc. Eeff values (50–196 kJ/mol) confirm the significant influence of liquid-phase processes on the combustion kinetics. The mechanism of structure formation was studied. A Si–Zr–Mo melt is formed in the combustion front. The primary grains of ZrB2 and MoB crystallize from this melt as it is saturated with boron. At the same time, the melt spreads over the surface of Zr and Mo particles. This leads to the formation of ZrSix, MoSix films. Core-shell structures are formed behind the combustion front, which disappear as they move towards the post-combustion zone. The phase composition of products is formed in the combustion front in less than 0.25 s.

About the Authors

Yu. S. Pogozhev
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Pogozhev Yu.S. – Cand. Sci. (Eng.), associate prof. of the Department of powder metallurgy and functional coatings (PM&FC) of National University of Science and Technology «MISIS» (NUST «MISIS»), leading researcher of the Scientific-Educational Centre of SHS of MISIS–ISMAN

119049, Moscow, Leninskiу pr., 4



A. Yu. Potanin
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Potanin A.Yu. – Cand. Sci. (Eng.), senior researcher of the Scientific-Educational Centre of SHS of MISIS–ISMAN

119049, Moscow, Leninskiу pr., 4



E. A. Bashkirov
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Bashkirov E.A. – scientific project engineer, Scientific-Educational Centre of SHS of MISIS–ISMAN

119049, Moscow, Leninskiу pr., 4



E. A. Levashov
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Levashov E.A. – Dr. Sci. (Eng.), prof., acad. of Russian Academy of Natural Science, head of the Department of PM&FC of NUST
«MISIS», head of the Scientific-Educational Centre of SHS of MISIS–ISMAN

119049, Russia, Moscow, Leninskiу pr., 4



D. Yu. Kovalev
Merzhanov Institute of Structural Macrokinetics and Materials Science of the Russian Academy of Sciences (ISMAN)
Russian Federation

Kovalev D.Yu. – Dr. Sci. (Phys.- Math.), chair of the Laboratory of X-ray diffraction studies, Merzhanov Institute of Structural Macrokinetics and Materials Science of the Russian Academy of Sciences (ISMAN)

142432, Moscow region, Chernogolovka, Academician Osipyan str., 8



N. A. Kochetov
National University of Science and Technology (NUST) «MISIS»; Merzhanov Institute of Structural Macrokinetics and Materials Science of the Russian Academy of Sciences (ISMAN)
Russian Federation

Kochetov N.A. – Cand. Sci. (Phys.-Math.), senior researcher of the Laboratory of dynamics of microheterogeneous processes

119049, Russia, Moscow, Leninskiу pr., 4;

142432, Moscow region, Chernogolovka, Academician Osipyan str., 8



References

1. Fahrenholtz W.G., Wuchina E.J., Lee W.E., Zhou Y. Ultrahigh temperature ceramics: materials for extreme environment applications. New Jersey: John Wiley & Sons Inc, 2014.

2. Neuman E.W., Hilmas G.E., Fahrenholtz W.G. Processing, microstructure and mechanical properties of zirconium diboride-boron carbide ceramics. Ceram. Int. 2017. Vol. 43. Iss. 9. P. 6942—6948.

3. RajuGolla B., Mukhopadhyay A., Basu B., Thimmappa S.K. Review on ultra-high temperature boride ceramics. Prog. Mater. Sci. 2020. Vol. 111. P. 100651.

4. Wuchina E., Opila E., Opeka M., Fahrenholtz W.G., Talmy I. UHTCs: ultra-high temperature ceramic materials for extreme environment applications. Electrochem. Soc. Interf. 2007. Vol. 16. P. 30—36.

5. Sonber J.K., Murthy T.S.R.Ch., Subramanian C., Kumar S., Fotedar R.K., Suri A.K. Investigations on synthesis of ZrB2 and development of new composites with HfB2 and TiSi2. Int. J. Refract. Met. Hard Mater. 2011. Vol. 29. Iss. 1. P. 21—30.

6. Nasseri M.M. Comparison of HfB2 and ZrB2 behaviors for using in nuclear industry. Ann. Nucl. Energy. 2018. Vol. 114. P. 603—606.

7. Sonber J.K., Suri A.K. Synthesis and consolidation of zirconium diboride: Review. Adv. Appl. Ceram. 2011. Vol. 10. P. 321—334.

8. Parthasarathy T.A., Rapp R.A., Opeka M.M., Kerans R.J. A model for transitions in oxidation regimes of ZrB2. Mater. Sci. Forum. 2008. Vol. 595—598. P. 823—832.

9. Parthasarathy T.A., Rapp R.A., Opeka M.M., Kerans R.J. A model for the oxidation of ZrB2, HfB2 and TiB2. Acta Mater. 2007. Vol. 55. Iss. 17. P. 5999—6010.

10. Silvestroni L., Stricker K., Sciti D., Kleebe H.-J. Understanding the oxidation behavior of a ZrB2—MoSi2 composite at ultra-high temperatures. Acta Mater. 2018. Vol. 151. P. 216—228.

11. Zhang W.Z., Zeng Y., Gbologan L., Xiong X., Huang B.Y. Preparation and oxidation property of ZrB2—MoSi2/SiC coating on carbon/carbon composites. Trans. Nonferr. Met. Soc. China. 2011. Vol. 21. P. 1538—1544.

12. Silvestroni L., Landi E., Bejtka K., Chiodoni A., Sciti D. Oxidation behavior and kinetics of ZrB2 containingSiC chopped fibers. J. Eur. Ceram. Soc. 2015. Vol. 35. P. 4377—4387.

13. Poilov V.Z., Pryamilova E.N. Thermodynamics of oxidation of zirconium and hafnium borides. Rus. J. Inorg. Chem. 2016. Vol. 61. P. 55—58.

14. Zhang L., Tong Z., He R., Xie C., Bai X., Yang Y., Fang D. Key issues of MoSi2—UHTC ceramics for ultrahigh temperature heating element applications: Mechanical, electrical, oxidation and thermal shock behaviors. J. Alloys Compd. 2019. Vol. 780. P. 156—163.

15. Paul T.R., Mondal M.K., Mallik M. Dry sliding wear response of ZrB2—20vol.%MoSi2 composite. Mater. Today Proc. 2018. Vol. 5. P. 7174—7183.

16. Sciti D., Brach M., Bellosi A. Long-term oxidation behavior and mechanical strength degradation of a pressurelessly sintered ZrB2—MoSi2 ceramic. Scr. Mater. 2005. Vol. 53. P. 1297—1302.

17. Guo W.M., Yang Z.G., Zhang G.J. Microstructural evolution of ZrB2—MoSi2 composites during heat treatment. Ceram. Int. 2011. Vol. 37. P. 2931—2935.

18. Wang R., Li W. Effects of microstructures and flaw evolution on the fracture strength of ZrB2—MoSi2 composites under high temperatures. J. Alloys Compd. 2015. Vol. 644. P. 582—588.

19. Liu H.T., Zou J., Ni D.W., Liu J.X., Zhang G.J. Anisotropy oxidation of textured ZrB2—MoSi2 ceramics. J. Eur. Ceram. Soc. 2012. Vol. 32. P. 3469—3476.

20. Chamberlain A.L., Fahreholtz W.G., Hilmas G.E. Characterization of zirconium diboride-molybdenum disilicide ceramics. Ceram. Trans. 2003. Vol. 153. P. 299—398.

21. Lavrenko V.O., Panasyuk A.D., Grigorev O.M., Koroteev O.V., Kotenko V.A. High-temperature (to 1600 °C) oxidation of ZrB2—MoSi2 ceramics in air. Powder Metall. Met. Ceram. 2012. Vol. 51. P. 102—107.

22. Silvestroni L., Sciti D. Effects of MoSi2 additions on the properties of Hf- and Zr—B2 composites produced by pressureless sintering. Scripta Mater. 2007. Vol. 57. P. 165—168.

23. Sciti D., Silvestroni L., Nygren M. Spark plasma sintering of Zr- and Hf-borides with decreasing amounts of MoSi2 as sintering aid. J. Eur. Ceram. Soc. 2008. Vol. 28. P. 1287—1296.

24. Silvestroni L., Kleebe H.-J., Lauterbach S., Muller M. Transmission electron microscopy on Zr- and Hf-borides with MoSi2 addition: Densification mechanisms. J. Mater. Res. 2010. Vol. 25. Iss. 5. P. 828—834.

25. Sciti D., Monteverde F., Guicciardi S., Pezzotti G., Bellosi A. Microstructure and mechanical properties of ZrB2— MoSi2 ceramic composites produced by different sintering techniques. Mater. Sci. Eng. 2006. Vol. 434. P. 3003—3009.

26. Abdollahi A., Valefi Z., Ehsani N. Erosion mechanism of ternary-phase SiC/ZrB2—MoSi2—SiC ultra-high temperature multilayer coating under supersonic flame at 90° angle with speed of 1400 m/s (Mach 4). J. Eur. Ceram. Soc. 2020. Vol. 40. P. 972—987.

27. Zhu L., Zhu Y., Ren X., Zhang P., Qiao J., Feng P. Microstructure, properties and oxidation behavior of MoSi2— MoB—ZrO2 coating for Mo substrate using spark plasma sintering. Surf. Coat. Technol. 2019. Vol. 375. P. 773—781.

28. Zhu G., Wang X., Feng P., Liu Z., Niu J., Akhtar F. Synthesis and properties of MoSi2—MoB—SiC ceramics. J. Am. Ceram. Soc. 2016. Vol. 99. P. 1147—1150.

29. Taleghani P.R., Bakhshi S.R., Erfanmanesh M., Borhani G.H., Vafaei R. Improvement of MoSi2 oxidation resistance via boron addition: Fabrication of MoB/MoSi2 composite by mechanical alloying and subsequent reactive sintering. Powder Technol. 2014. Vol. 254. P. 241—247.

30. Potanin A.Yu., Pogozhev Yu.S., Levashov E.A., Novikov A.V., Shvindina N.V., Sviridova T.A. Kinetics and oxidation mechanism of MoSi2—MoB ceramics in the 600—1200 °C temperature range. Ceram. Int. 2017. Vol. 43. P. 10478—10486.

31. Schneibel J.H., Sekhar J.A. Microstructure and properties of MoSi2—MoB and MoSi2—Mo5Si3 molybdenum silicides. Mater. Sci. Eng. 2003. Vol. 340. Iss. 1—2. P. 204—211.

32. Guicciardi S., Swarnakar A.K., Biest O.V., Sciti D. Temperature dependence of the dynamic Young’s modulus of ZrB2—MoSi2 ultra-refractory ceramic composites. Scr. Mater. 2010. Vol. 62. P. 831—834.

33. Grohsmeyer R.J., Silvestroni L., Hilmas G.E., Monteverde F., Fahrenholtz W.G., D’Angió A., Sciti D. ZrB2—MoSi2 ceramics: A comprehensive overview of microstructure and properties relationships. Part I: Processing and microstructure. J. Eur. Ceram. Soc. 2019. Vol. 39. P. 1939—1947.

34. Francis L.F. Materials processing: A unified approach to processing of metals, ceramics and polymers. Oxford: Elsevier Inc., 2016.

35. Borovinskaya I.P., Gromov A.A., Levashov E.A., Maksimov Y.M., Mukasyan A.S., Rogachev A.S. Concise encyclopedia of self-propagating high-temperature synthesis: History, theory, technology, and products. Oxford: Elsevier, 2017.

36. Ordanyan S.S., Vikhman S.V., Nagaeva Yu.V., Hovsepyan A.H. On interaction in MoSi2—MeIVB2 system. Proc. NAS RA SEUA: Tech. Sci. 2011. Vol. 64. Iss. 1. P. 36—43.

37. Vega Farje J.A., Matsunoshita H., Kishida K., Inui H. Microstructure and mechanical properties of a MoSi2—Mo5Si3 eutectic composite processed by laser surface melting. Mater. Char. 2019. Vol. 148. P. 162—170.

38. Iatsyuk I.V., Pogozhev Yu.S., Levashov E.A., Novikov A.V., Kochetov N.A., Kovalev D.Yu. Combustion synthesis of high-temperature ZrB2—SiC ceramics. J. Eur. Ceram. Soc. 2018. Vol. 38. P. 2792—2801.


Review

For citations:


Pogozhev Yu.S., Potanin A.Yu., Bashkirov E.A., Levashov E.A., Kovalev D.Yu., Kochetov N.A. Self-propagating high-temperature synthesis of heterophase materials in the Zr–Mo–Si–B system. Kinetics and mechanisms of combustion and structure formation. Izvestiya. Non-Ferrous Metallurgy. 2022;(5):66-77. (In Russ.) https://doi.org/10.17073/0021-3438-2022-5-66-77

Views: 437


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)