Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

New process solutions in the manufacture of thermochemically resistant ceramic molds for casting titanium alloys

https://doi.org/10.17073/0021-3438-2022-5-55-65

Abstract

The paper provides the results of studies on interaction between titanium melts and silica-containing investment molds. Pure silicon, compounds of titanium oxides and silicides were detected by X-ray diffraction analysis in the contact zone. The problem of the negative impact exerted by the mold on the casting is solved by using thermally stable and chemically resistant monocorundum molds based on an alumina sol binder. A refractory suspension was developed for investment casting containing special additives to improve wax mold wetting with the suspension, and to increase the mold shell strength. The article studies sedimentation properties of suspension. A method was developed for accelerated curing of sequentially applied refractory suspension layers by vacuum drying and subsequent chemical curing with a gaseous reagent. The formation time is reduced from 3–5 h to 20–30 min per layer. Comparative studies of kinetics of alumina sol binder convective drying and vacuum dehydration were conducted. The process of moisture removal per unit surface of the applied refractory layer in a vacuum of 5–10 kPa increases by 2–6 times. X-ray phase analysis was used to study the alumina sol conversion during high-temperature heating. The solid gel of the α-Al2O3 stable phase is obtained in the alumina sol mold shell when the calcination temperature rises to 1300–1350 °C with a sufficient strength of 9–12 MPa provided by sintering additives added to the suspension. Recommendations are given for additional protection of refractory ceramic layers after vacuuming and drying: treatment of the last layer with gaseous curing agents and application of a polyvinylacetal solution with a density of 1100–1200 kg/m3. The process solutions proposed will make it possible to increase both the efficiency of titanium alloy forming and casting processes and the quality of castings.

About the Authors

V. K. Dubrovin
South Ural State University (National Research University (SUSU (NRU))
Russian Federation

Dubrovin V.K. – Dr. Sci. (Eng.), prof. of the Department of pyrometallurgical and foundry technologies (PMFT)

454080, Chelyabinsk, Lenin pr., 76



B. A. Kulakov
South Ural State University (National Research University (SUSU (NRU))
Russian Federation

Kulakov B.A. – Dr. Sci. (Eng.), prof. of the Department of PMFT

454080, Chelyabinsk, Lenin pr., 76



A. V. Karpinskii
South Ural State University (National Research University (SUSU (NRU))
Russian Federation

Karpinskii A.V. – Cand. Sci. (Eng.), assistant prof. of the Department of PMFT

454080, Chelyabinsk, Lenin pr., 76



O. M. Zaslavskaia
South Ural State University (National Research University (SUSU (NRU))
Russian Federation

Zaslavskaia O.M. – Cand. Sci. (Eng.), assistant prof. of the Department of PMFT

454080, Chelyabinsk, Lenin pr., 76



References

1. Makushina M.A., Kochetkov A.S., Nochovnaya N.A. Casting titanium alloys for aviation technology (review). Trudy VIAM. 2021. No. 7 (101). P. 39—47. DOI: 10.18577/2307-6046-2021-0-7-39-47 (In Russ.).

2. Fadeev A., Bazhenov V., Koltygin A. Improvement in the casting technology of blades for aviation gas-turbine engines made of TNM-B1 titanium aluminide alloy produced by induction crucible melting. Russ. J. Non-Ferr. Met. 2016. No. 56. P. 26—32. DOI: 10.3103/S1067821215010071.

3. Il’in A.A., Kolachev B.A., Pol’kin I.S. Titanium alloys. Composition, structure, properties. Moscow: VILS—MATI, 2009 (In Russ.).

4. Dubrovin V.K., Kulakov B.A., Karpinskii A.V. Production of castings from nickel and titanium alloys in thermochemically resistant forms. Chelyabinsk: YuUrGU, 2010 (In Russ.).

5. Ashby M.F., Jones D.R.H. Engineering materials. 1. An introduction to properties, applications and design. 1-st ed. Elsevier, 2012.

6. Clemens H., Wallgram W., Kremmer S., Güther V., Otto A., Bartels A. Design of novel β-solidifying TiAl alloys with adjustable β/B2-phase fraction and excellent hotworkability. Adv. Eng. Mater. 2008. No. 10 P. 707—713. DOI: 10.1002/adem.200800164.

7. Clemens H., Mayer S. Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys. Adv. Eng. Mater. 2013. No. 15 P. 191—215. DOI: 10.1002/adem.201200231.

8. Pattnaik S., Karunakar D.B., Jha P. Developments in investment casting process: a review. J. Mater. Process. Technol. 2012. No. 212. P. 2332—2348. DOI: 10. 1016/j.jmatprotec.2012.06.003.

9. Nastac L., Gungor M., Ucok I., Klug K., Tack W.T. Advances in investment casting of T—6Al—4V: A review. Int. J. Cast Met. Res. 2006. No. 19. P. 73—93. DOI: 10.1179/136404605225023225.

10. Kurdyumov A.V., Belov V.D., Pikunov M.V., Chursin V.M., Gerasimov S.P., Moiseev V.S. Production of castings from non-ferrous alloys. Moscow: MISIS, 2011 (In Russ.).

11. Ivanov V.N., Kazenov S.A., Kurchman B.S., Lyashchenko N.N., Militsyn G.K., Ozerov V.A. Lost wax casting. Moscow: Mashinostroenie, 1984 (In Russ.).

12. Mukhamadeev I.R., Demenyuk O.B., Ganeev A.A., Pavlinich S.P., Alikin P.V. Selection of water-based binders for shell molds of investment casting of titanium alloys. Vestnik YuUrGU. Ser. Metallurgiya. 2015. Vol. 15. No. 3. P. 95—104 (In Russ.).

13. Murav’ev V.I., Bakhmatov P.V., Dolotov B.I. Ensuring the reliability of titanium alloy structures. Moscow: Ekom, 2009 (In Russ.).

14. Gogia A.K. High-temperature titanium alloys. Def. Sci. J. 1979. Vol. 55. No. 2. P. 149—173. DOI: 10.14429/dsj.55.1979.

15. Chamorro X., Herrero-Dorca N., Rodríguez P., Andrés U., Azpilgain Z. α-Case formation in Ti—6Al—4V investment casting using ZrSiO4 and Al2O3 moulds. J. Mater. Process. Technol. 2017. No. 243. P. 75—81. DOI: 10.1016/j.jmatprotec.2016.12.007.

16. Sung S.-Y., Kim Y.-J. Influence of Al contents on alphacase formation of Ti—xAl alloys. J. Alloy. Compd. 2006. No. 415. P. 93—98. DOI: 10.1016/j.jallcom.2005.07.05.

17. Boettinger W.J., Williams M.E., Coriell S.R., Kattner U.R., Mueller B. Alpha case thickness modeling in investment castings. Met. Mater. Trans. B. 2000. No. 31. P. 1419—1427. DOI: 10.1007/s11663-000-0026-y.

18. Beruto D., Barco L., Belleri G. On the stability of refractorymaterials under industrial vacuum conditions: Al2O3, BeO, CaO, Cr2O3, MgO, SiO2, TiO2 systems. Ceram. Int. 1975. Vol. 1. lss. 2. P. 87—93. DOI: 10.1016/0390-5519(75)90012-5.

19. Aviation materials: Handbook. Vol. 5. Moscow: ONTI, 1973 (In Russ.).

20. Kazenas E.K., Tsvetkov Yu.V. Thermodynamics of evaporation of oxides. Moscow: Izd-vo LKI, 2008 (In Russ.).

21. Kulikov I.S. Thermodynamics of oxides. Moscow: Metallurgiya, 1986 (In Russ.).

22. Kazachkov E.A. Calculations according to the theory of metallurgical processes. Moscow: Metallurgiya, 1988 (In Russ.).

23. Smitlz K.J. Metals. Moscow: Metallurgiya, 1980 (In Russ.).

24. Zhou R.S., Snyder R.L. Structure and transformation mechanisms of the eta, gamma and theta transition aluminas. Acta Crystallogr., Sect. B: Structur. Sci. 1991. Vol. 47(5). P. 617—630. DOI: 10.1107/S0108768191002719.

25. Stumpf H.C., Russell Allen S., Newsome J.W., Tucker C.M. Thermal transformations of aluminas and alumina hydrates — reaction with 44 % technical acid. Ind. Eng. Chem. 1950. Vol. 42. No. 7. P. 1398—1403. DOI: 10.1021/ie50487a039.

26. Garcia-Guinea J., Rubio J., Correcher V., Valle-Fuentes F.J. Luminescence of α-Al2O3 and α-AlOOH natural mixtures. Radiat. Meas. 2001. No. 33. P. 653—658. DOI: 10.1016/S1350-4487(01)00078-6.

27. Winkler B., Hytha M., Pickard C., Milman V., Warren M., Segall M. Theoretical investigation of bonding in diaspore. Eur. J. Mineral. 2001. No. 13. P. 343—349. DOI: 10.1127/0935-1221/01/0013-0343.

28. Silberberg Martin S. Chemistry: the molecular nature of matter and change. 5th ed. McGraw-Hill Companies, Inc., 2008.

29. Dubrovin V.K., Kulakov B.A., Karpinskii A.V., Zaslavskaia O.M., Nizovtsev N.V. A method of manufacturing ceramic molds using investment wax patterns for producing precision castings from reactive and heat-resistant alloys: Pat. 2757519 (RF). 2021 (In Russ.).


Review

For citations:


Dubrovin V.K., Kulakov B.A., Karpinskii A.V., Zaslavskaia O.M. New process solutions in the manufacture of thermochemically resistant ceramic molds for casting titanium alloys. Izvestiya. Non-Ferrous Metallurgy. 2022;(5):55-65. (In Russ.) https://doi.org/10.17073/0021-3438-2022-5-55-65

Views: 384


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)