Finite element analysis of stress-strain state of the deformation zone of a UFG TI Grade 4 workpiece subjected to abrasive-free ultrasonic finishing
https://doi.org/10.17073/0021-3438-2022-5-36-45
Abstract
An effective approach to increasing the fatigue resistance of metal products is to create compressive residual stresses on the surface of the product using surface plastic deformation (SPD) processing. One of the effective SPD methods is the process of abrasive-free ultrasonic finishing (AFUF). Another well-known approach to improving mechanical properties including fatigue resistance is to create an ultrafinegrained (UFG) structural state in the product. This research focuses on the finite-element study of the stress-strain state of a UFG workpiece subjected to SPD by the AFUF method. Commercially pure Grade 4 titanium in the UFG state obtained by the ECAP-Conform method was chosen as a workpiece material. In the course of the study, the stress-strain state of the deformation zone was analyzed after a single indentation with subsequent unloading under the elastic-plastic scenario. The effect of the indenter oscillation amplitude and its geometry on radial residual stresses including their depth of occurrence, average normal stress and strain intensity was analyzed. It was found that as the indenter radius increases, the strain intensity (e) value decreases. The e parameter distribution has a gradient nature with a decrease in values from the surface to the center of the workpiece. An analysis of simulation results shows that radial residual stresses in the deformation zone are predominantly compressive, and, accordingly, they will increase the fatigue resistance of the finished product. It was established that as the indenter oscillation amplitude increases, the values of compressive radial residual stresses also increase. Their maximum values reach 540 MPa at an amplitude of 75 μm with the depth of these stresses up to 0.3 mm. An increase in the indenter radius, i.e. in fact the contact area, leads to an increase in the magnitude of compressive radial residual stresses with an almost linear behavior.
Keywords
About the Authors
R. N. AsfandiyarovRussian Federation
Asfandiyarov R.N. – Cand. Sci. (Eng.), researcher of the Laboratory of solid state physics of the Institute of Molecules and Crystals Physics
450054, Ufa, Oktyabrya ave., 71
G. I. Raab
Russian Federation
Raab G.I. – Dr. Sci. (Eng.), leading researcher
455000, Magnitogorsk, Lenin ave., 38
D. V. Gunderov
Russian Federation
Gunderov D.V. – Dr. Sci. (Phys.-Math.), leading researcher of the Laboratory of solid state physics
450054, Ufa, Oktyabrya ave., 71
D. A. Aksenov
Russian Federation
Aksenov D.A. – junior researcher of the Laboratory of solid state physics
450054, Ufa, Oktyabrya ave., 71
A. G. Raab
Russian Federation
Raab A.G. – Cand. Sci. (Eng.), researcher
450008, Ufa, K. Marks str., 12
References
1. Terentiev V.F. Fatigue of materials. Moscow: Nauka, 2002 (In Russ.).
2. Brunette D.M., Tengvall P., Textor M., Thomsen P. Titanium in medicine. Berlin Heidelberg: Springer-Verlag, 2001.
3. Elias C.N., Lima J.H.C., Valiev R., Meyers M.A. Biomedical applications of titanium and its alloys. JOM. 2008. Vol. 60. P. 46—49. DOI: 10.1007/s11837-008-0031-1.
4. Lowe T., Valiev R.Z. Investigations and applications of severe plastic deformation: NATO Science Partnership Subser. 3. Springer Science & Business Media, 2000.
5. Zehetbauer M.J., Valiev R.Z. Nanomaterials by severe plastic deformation. John Wiley & Sons, 2006.
6. Segal V.M. Materials processing by simple shear. Mater. Sci. Eng. A. 1995. Vol. 197. P. 157—164.
7. Erdedi A.A., Medvedev Yu.A., Erdedi N.A. Technical mechanics: Theoretical mechanics. Strength of materials. Moscow: Vysshaya shkola, 1991 (In Russ.).
8. Pande C.S., Imam M.A., Srivatsan T.S. Fundamentals of fatigue crack initiation and propagation: A review. In: Fatigue of materials advances and emergences in understanding. TMS (The Minerals, Metals & Materials Society), 2010. P. 1—18.
9. Li L., Kim M., Lee S., Bae M., Lee D. Inflence of multiple ultrasonic impact treatments on surface roughness and wear performance of SUS301 steel. Surf. Coat. Technol. 2016. Vol. 307. P. 517—524.
10. Liu C.S., Liu D.X., Zhang X.H., Liu D., Ma A.M., Ao N., Xu X.C. Improving fatigue performance of Ti—6Al—4V alloy via ultrasonic surface rolling process. J. Mater. Sci. Technol. 2019. Vol. 35. P. 1555—1562.
11. Fedchishin O.V., Trofimov V.V., Klimenov V.A. Effect of ultrasonic treatment on the structure and physical and mechanical properties of titanium VT1-0. Sibirskii Meditsinskii Zhurnal. 2009. No. 6. P. 189—192 (In Russ.).
12. Zhang H., Chiang R., Qin H.F., Ren Z.C., Hou X.N., Lin D., Doll G.L., Vasudevan V.K., Dong Y.L., Ye C. The effects of ultrasonic nanocrystal surface modifiation on the fatigue performance of 3D-printed Ti64. Int. J. Fatigue. 2017. Vol. 103. P. 136—146.
13. Liu J., Suslov S., Ren Z.C., Dong Y.L., Ye C. Microstructure evolution in Ti64 subjected to laser-assisted ultrasonic nanocrystal surface modifiation. Int. J. Mach. Tools. Manuf. 2019. Vol. 136. P. 19—33.
14. Холопов Ю.В. Безабразивная ультразвуковая финишная обработка металлов — технология ХХI века. Металлообработка. 2002. No. 4. С. 46—48.
15. Kholopov Yu.V. Non-abrasive ultrasonic finishing of metals — technology of the 21st century. Metalloobrabotka. 2002. No. 4. P. 46—48 (In Russ.).
16. Alexandrov M.K., Papsheva N.D., Akushskaya O.M. Ultrasonic hardening of GTD parts. Bulletin of Samara State Aerospace University. 2011. No. 3 (27). P. 271—276 (In Russ.).
17. Kozlov E.V., Gromov V.E., Kovalenko V.V., Popova N.A. Gradient structures in pearlitic steel. Novokuznetsk: SibGIU, 2004 (In Russ.).
18. Ivanov Yu.F., Efimov O.Yu., Popova N.A., Kovalenko V.V., Konovalov S.V., Gromov V.E., Kozlov E.V. Formation of gradient structural-phase states at the nanoscale level in rolling rolls. Fundamental’nue problemy sovremennogo materialovedeniya. 2008. No. 4. P. 55—58 (In Russ.).
19. Lu K. Making strong nanomaterials ductile with gradients. Science. 2014. Vol. 345. P. 1455—1456.
20. Kattoura M., Telang A., Mannava S.R., Qian D., Vasudevan V.K. Effect of ultrasonic nanocrystal surface modifiation on residual stress, microstructure and fatigue behavior of ATI 718Plus alloy. Mater. Sci. Eng. A. 2018. Vol. 711. P. 364—377.
21. Liu D., Liu D.X., Zhang X.H., Liu C.S., Ao N. Surface nanocrystallization of 17-4 precipitation-hardening stainless steel subjected to ultrasonic surface rolling process. Mater. Sci. Eng. A. 2018. Vol. 726. P. 69—81.
22. Müller M., Lebedev A., Svobodová J., Náprsková N., Lebedev P. Abrasive-free ultrasonic finishing of metals. Manuf. Technol. 2014. Vol. 14 (3). P. 366—370.
23. Aleš Z., Pavlů J., Hromasová M., Svobodová J. Tribological properties of brass surfaces machined by abrasive — free ultrasonic finishing process. Manuf. Technol. 2019. Vol. 19 (1). P. 3—8.
24. Клименов В.А., Ковалевская Ж.Г., Каминский П.П., Шаркеев Ю.П., Лотков А.И. Ультразвуковая поверхностная обработка — перспективный способ повышения ресурса работы деталей железнодорожного транспорта. Вестн. СНУ им. В. Даля. 2010. Т. 152. No. 10. С. 117—121.
25. Klimenov V.A., Kovalevskaya Zh.G., Kaminskii P.P., Sharkeev Yu.P., Lotkov A.I. Ultrasonic surface treatment — a promising way to increase the service life of railway transport parts. Bull. Dahl Nat. Res. Univ. 2010. Vol. 152. No. 10. P. 117—121 (In Russ.).
26. Kovalevskaya Zh.G., Ivanov Yu.F., Perevalova O.B., Klimenov V.A., Uvarkin P.V. Investigation of microstructure of surface layers of low-carbon steel after turning and ultrasonic finishing. Fizika metallov i metallovedenie. 2013. Vol. 114. No. 1. P. 47—60 (In Russ.).
27. Chao Guo, Wang Zhijiang, Wang Dongpo, Hu Shengsun. Numerical analysis of the residual stress in ultrasonic impact treatment process with single-impact and twoimpact models. Appl. Surf. Sci. 2015. Vol. 347. P. 596—601.
28. Gunderov D.V., Polyakov A.V., Churakova A.A., Semenova I.P., Raab G.I., Valiev R.Z., Gemaletdinova E., Sabirov I., Segurado J., Sitdikov V.D., Alexandrov I.V., Enikeev N.A. Evolution of microstructure, macrotexture and mechanical properties of commercially pure Ti during ECAP-Conform. Mater. Sci. Eng. A. 2013. Vol. 562. P. 128—136. DOI: 10.1016/j.msea.2012.11.007.
29. Sibum H., Güther V., Roidl O., Habashi F., Uwe H., Wolf H., Siemers C. Titanium, titanium alloys, and titanium compounds. In: Ullmann’s encyclopedia of industrial chemistry. 2017. P. 1—35.
30. Meier L., Schaal N., Wegener K. In-process measurement of the coefficient of friction on titanium. Procedia CIRP. 2017. Vol. 58. P. 163—168.
31. Morikage Y., Igi S., Oi K., Jo Y., Murakami K., Gotoh K. Effect of compressive residual stress on fatigue crack propagation. Procedia Eng. 2015. Vol. 130. P. 1057—1065.
32. Kodama S., Misawa H., Ohsumi K. Compressive residual stress on fatigue fractured surface. In: Int. Conf. on residual stresses. Dordrecht: Springer, 1989.
Review
For citations:
Asfandiyarov R.N., Raab G.I., Gunderov D.V., Aksenov D.A., Raab A.G. Finite element analysis of stress-strain state of the deformation zone of a UFG TI Grade 4 workpiece subjected to abrasive-free ultrasonic finishing. Izvestiya. Non-Ferrous Metallurgy. 2022;(5):36-45. (In Russ.) https://doi.org/10.17073/0021-3438-2022-5-36-45