Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Effect of reduction ratio during cold rolling and final annealing temperature on the properties and microstructure of Al–Mg–Sc alloy sheets

https://doi.org/10.17073/0021-3438-2022-4-75-83

Abstract

The study covers the effect of the reduction ratio during cold rolling (εh) and the final annealing temperature of sheets rolled with different reduction ratios on the microstructure and the complex of mechanical and processing properties of cold-rolled sheets made of the V-1579 aluminum alloy of the Al–Mg–Sc system. It was established that as εh increases, the nature of plastic anisotropy changes slightly, and an increase in tensile strength and yield strength with a decrease in relative elongation is observed. In this case, the ultimate strength and yield strength anisotropy is practically absent. As the reduction ratio increases to 30–40 %, the relative elongation anisotropy increases, and its value in the rolling direction decreases more rapidly. However, after rolling with εh > 50 %, the relative elongation anisotropy practically disappears. Regardless of the annealing temperature, samples rolled with a higher reduction ratio have better strength properties. It was found that as the annealing temperature increases, the ultimate strength and yield strength decrease, and the relative elongation increases. In this case, softening with an increase in the annealing temperature occurs more intensively for samples rolled with a lower reduction. After annealing, the distribution nature of anisotropy indices in the sheet plane does not decrease and corresponds to the deformation type of textures for all analyzed modes. Moreover, the value of the in-plane anisotropy coefficient decreases in comparison with a cold-rolled sample. At the same time, processing properties of samples rolled with a higher degree of deformation after annealing are higher than those of samples rolled with a lower reduction, regardless of the annealing temperature.

About the Authors

F. V. Grechnikov
Samara National Research University n.a. acad. S.P. Korolev (Samara University); Samara Federal Research Center of Russian Academy of Science
Russian Federation

Dr. Sci. (Eng.), Academician of the Russian Academy of Sciences, Head of the Department of metal forming; Chief researcher

44086, Russia, Samara, Lukacheva str., 47

443001, Russia, Samara, Studencheskii per., 3A



Ya. A. Erisov
Samara National Research University n.a. acad. S.P. Korolev (Samara University)
Russian Federation

Dr. Sci. (Eng.), Prof., Department of metal forming

44086, Russia, Samara, Lukacheva str., 47



S. V. Surudin
Samara National Research University n.a. acad. S.P. Korolev (Samara University)
Russian Federation

Cand. Sci. (Tech.), Associate prof., Department of metal forming

44086, Russia, Samara, Lukacheva str., 47



V. A. Razzhivin
Samara National Research University n.a. acad. S.P. Korolev (Samara University)
Russian Federation

Graduate student, Engineer, Department of metal forming

44086, Russia, Samara, Lukacheva str., 47



References

1. Elagin V.I. Scientific works of S.M. Voronov on aluminum alloys and their role in modern metal science. In: Metallovedeniye i tekhnologiya legkikh splavov. Moscow: VILS, 2001. P. 5—15 (In Russ.).

2. Kondratieva N.B., Zolotorevsky Yu.S. Alloys of aluminum with magnesium (magnium). In: Promyshlennye alyuminiyevye splavy: Handbook (Eds. Aliyev S.G., Al’tman M.B., Ambartsumyan S.M. et al.). Moscow: Metallurgiya, 1984. P. 37—51 (In Russ.).

3. Elagin V.I. On alloying wrought aluminum alloys with transition metals. In: Metallovedeniye splavov legkikh metallov. Moscow: Nauka, 1970. P. 51—59 (In Russ.).

4. Elagin V.I. Alloying of wrought aluminum alloys with transition metals. Moscow: Metallurgiya, 1975 (In Russ.).

5. Willey L.A. Aluminum—scandium alloy: Pat. No. 3619181 (US). 1971.

6. Drits M.E., Kadaner E.S., Dobatkina T.V., Turkina N.I. On the nature of the interaction of scandium with aluminum in the aluminum-rich part of the Al—Sc system. Izv. AN SSSR. Metally. 1973. No. 4. P. 213—217 (In Russ.).

7. Drits M.E., Turkina N.I., Kadaner E.S., Dobatkina T.V. Structure and mechanical properties of aluminumscandium alloys. In: Redkie metally v tsvetnykh splavakh. Moscow: Nauka, 1975. P. 160—167 (In Russ.).

8. Turkina N.I., Kuzmina V.I. Phase interactions in the Al—Mg—Sc system. Izv. AN SSSR. Metally. 1976. No. 4. P. 208—212 (In Russ.).

9. Kadaner E.S., Turkina N.I. The nature of the interaction of rare earth metals with aluminum in binary and ternary systems. In: Problemy metallovedeniya tsvetnykh splavov. Moscow: Nauka, 1978. P. 71—76 (In Russ.).

10. Ryabov D.K., Vakhromov R.O., Ivanova A.O. Influence of small additives of elements with high solubility in aluminum on the microstructure of ingots and coldrolled sheets from an alloy of the Al—Mg—Sc system. Trudy VIAM: Electronic journal. 2015. No. 9. Art. 05. URL: http://www.viam-works.ru (accessed: 05.15.2017) (In Russ.).

11. Kendig K.L., Miracle D.B. Strengthening mechanisms of an Al—Mg—Sc—Zr alloy. Acta Mater. 2002. Vol. 50 (16). P. 4165—4175.

12. Ocenasek V., Slamova M. Resistance to recrystallization due to Sc and Zr addition to Al—Mg alloys. Mater. Charact. 2001. Vol. 47 (2). P. 157—162.

13. Shen J., Chen B., Wan J., Shen J., Li J. Effect of annealing on microstructure and mechanical properties of an Al—Mg—Sc—Zr alloy. Mater. Sci. Eng. A. 2022. Vol. 838. Art. 142821.

14. Lee S., Utsunomiya A., Akamatsu H., Neishi K., Furukawa M., Horita Z., Langdon T.G. Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al—Mg alloys. Acta Mater. 2002. Vol. 50 (3). P. 553—564.

15. Gholinia A., Humphreys F.J., Prangnell P.B. Production of ultra-fine grain microstructures in Al—Mg alloys by coventional rolling. Acta Mater. 2002. Vol. 50 (18). P. 4461—4476.

16. Akamatsu H., Fujinami T., Horita Z., Langdon T.G. Influence of rolling on the superplastic behavior of an Al—Mg—Sc alloy after ECAP. Scripta Mater. 2001. Vol. 44 (5). P. 759—764.

17. Sitdikov O., Sakai T., Avtokratova E., Kaibyshev R., Tsuzaki K., Watanabe Y. Microstructure behavior of Al—Mg—Sc alloy processed by ECAP at elevated temperature. Acta Mater. 2008. Vol. 56 (4). P. 821—834.

18. Mathew R.T., Singam S., Ghosh P., Masa S.K., Prasad M.J.N.V. The defining role of initial microstructure and processing temperature on microstructural evolution, hardness and tensile response of Al—Mg—Sc—Zr (AA5024) alloy processed by high pressure torsion. J. Alloys Compd. 2022. Vol. 901. Art. 163548.

19. Li R., Wang M., Yuan T., Song B., Chen C., Zhou K., Cao P. Selective laser melting of a novel Sc and Zr modified Al—6.2 Mg alloy: Processing, microstructure, and properties. Powder Technol. 2017. Vol. 319. P. 117—128.

20. Ren Y., Dong P., Zeng Y., Yang T., Huang H., Chen J. Effect of heat treatment on properties of Al—Mg—Sc—Zr alloy printed by selective laser melting. Appl. Surf. Sci. 2022. Vol. 574. Art. 151471.

21. Zhu Y., Zhao Y., Chen B. A study on Sc- and Zr-modified Al—Mg alloys processed by selective laser melting. Mater. Sci. Eng. A. 2022. Vol. 833. Art. 142516.

22. Grechnikov F.V. Deformation of anisotropic materials (Reserves of intensification). Moscow: Mashinostroyenie, 1998 (In Russ.).

23. Mizeraa J., Drivera J.H., Jezierskab E., Kurzydlowski K.J. Studies of the relationship between the microstructure and anisotropy of the plastic properties of industrial aluminum-lithium alloys. Mater. Sci. Eng. A. 1996. Vol. 212. No. 1. P. 94—101.

24. Dittenber D.B., Ganga Rao H.S.V. Critical review of recent publications on use of natural composites in infrastructure. Composites Pt. A: Appl. Sci. Manufact. 2012. Vol. 43. No. 8. P. 1419—1429.

25. Choia S.-H., Barlat F. Prediction of macroscopic anisotropy in rolled aluminum-lithium sheet. Scripta Mater. 1999. Vol. 41. No. 9. P. 981—987.

26. Longzhou M., Jianzhong C., Xiaobo Z.A. A study on improving the cold-forming property of Al—Mg—Li alloy 01420. Adv. Perform. Mater. 1997. Vol. 4. P. 105—114.


Review

For citations:


Grechnikov F.V., Erisov Ya.A., Surudin S.V., Razzhivin V.A. Effect of reduction ratio during cold rolling and final annealing temperature on the properties and microstructure of Al–Mg–Sc alloy sheets. Izvestiya. Non-Ferrous Metallurgy. 2022;28(4):75-83. (In Russ.) https://doi.org/10.17073/0021-3438-2022-4-75-83

Views: 394


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)