Influence of Ti, Sr and B additions on the fluidity of A356.2 aluminium alloy
https://doi.org/10.17073/0022-3438-2021-4-55-66
Abstract
Nowadays, aluminum alloys with silicon are the most widespread construction materials. To increase the mechanical properties of aluminum alloys, modifying by Sr, Ti, and B are used. However, in the foundries, when using scrap and secondary aluminum alloys, the modifying elements are accumulated in alloys in the form of intermetallic particles that decrease castability. This is because of the modifiers have a short time effect and are not activated when remelting. Hence it is necessary to add the modifiers without reference to intermetallic particles that are exactly presented in the melt. This work investigated the effect of Sr, Ti, and B additions on A356.2 aluminum alloy fluidity obtained by vacuum fluidity test. It was shown that when AlSr10 and AlTi5B1 commercial master alloys are used (up to 0.3 wt.% Sr and 0.5 wt.%Ti), no fluidity decrease is observed. However, adding the same quantity of Ti with the homemade AlTi4 master alloy leads to a considerable fluidity decrease. With the help of scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS), the microstructure and phase composition of master alloys and A356.2 alloy after the addition of mentioned master alloys were investigated. Additionally, Thermo- Calc software evaluated the influence of modifier additions on alloy phase composition and phase transition temperatures. It was established that the influence of the modifier additions on the fluidity of the A356.2 alloy is connected with the shape and size of crystals that contained modifier elements in the structure of the master alloy. When the coarse crystals of that phases are present, these crystals’ incomplete dissolution is possible, inhibiting the free melt flow.
About the Authors
V. E. BazhenovRussian Federation
Cand. Sci. (Eng.), Assistant prof., Department of foundry technologies and material art working (FT&MAW)
119991, Russia, Moscow, Leninskii pr., 4
I. I. Baranov
Russian Federation
Lab. assistant, Department of FT&MAW
119991, Russia, Moscow, Leninskii pr., 4
A. Yu. Titov
Russian Federation
Cand. Sci. (Eng.), Assistant prof., Department of FT&MAW
119991, Russia, Moscow, Leninskii pr., 4
A. V. Sannikov
Russian Federation
Cand. Sci. (Eng.), Assistant prof., Department of FT&MAW
119991, Russia, Moscow, Leninskii pr., 4
D. Yu. Ozherelkov
Russian Federation
Cand. Sci. (Eng.), Researcher, Catalysis Lab.
119991, Russia, Moscow, Leninskii pr., 4
A. A. Lyskovich
Russian Federation
Lab. assistant, Department of FT&MAW
119991, Russia, Moscow, Leninskii pr., 4
A. V. Koltygin
Russian Federation
Cand. Sci. (Eng.), Assistant prof., Department of FT&MAW
119991, Russia, Moscow, Leninskii pr., 4
V. D. Belov
Russian Federation
Dr. Sci. (Eng.), Head of the Department of FT&MAW
119991, Russia, Moscow, Leninskii pr., 4
References
1. Han Y., Liu X., Bian X. In situ TiB2 particulate reinforced near eutectic Al—Si alloy composites. Compos. Pt. A: Appl. Sci. Manuf. 2002. Vol. 33. Iss. 3. P. 439—444.
2. Dahle A.K., Tшndel P.A., Paradies C.J., Arnberg L. Effect of grain refinement on the fluidity of two commercial Al—Si foundry alloys. Metall. Mater. Trans. A. 1996. Vol. 27. P. 2305—2313.
3. Dolata-Grosz A., Dyzia M., Šleziona J. Influence of modification on structure, fluidity and strength of 226D aluminium alloy. Arch. Foundry Eng. 2008. Vol. 8. P. 13—16.
4. Rao B.V.S., Chennakesava Reddy A. Fluidity of modified and unmodified Al—Si alloys in alumina investment shell moulds. In: Proc. of National Conference on Advances in Design Approaches and Production Technologies (ADAPT-2005) (22—23 August 2005). Hyderabad: JNTU College of Eng., 2005. P. 57—60.
5. Abd El Majid S., Bamberger M., Katsman A. Influence of additional elements (Si, Ti and B) on the castability, corrosion and mechanical properties of A201 alloys. In: TMS 2018: Light Metals 2018. Cham.: Springer, 2018. P. 259—265.
6. Chegodaev D.A., Antonov M.M. Influence of melt modification on the technological and mechanical properties of AK7pch alloy parts. In: Sbornik materialov mezhdunarodnykh nauchno-prakticheskikh konferentsii. Mosсow: Maxbook, 2018. P. 349—353 (In Russ.).
7. Simonova M.S., Kovalev D.V. Influence of modification on the structure and fluidity of the AK12 alloy. In: Trudy XVII Mezhdunar. nauch.-tekhn. Ural’skoi shkoly-seminara metallovedov — molodykh uchenykh (5—9 December 2016). Yekaterinburg: UrFU, 2016. P. 73—77 (In Russ.).
8. Li J.G., Zhang B.Q., Wang L., Yang W.Y., Ma H.T. Combined effect and its mechanism of Al—3wt.%Ti—4wt.%B and Al—10wt.%Sr master alloy on microstructures of Al—Si—Cu alloy. Mater. Sci. Eng. A. 2002. Vol. 328. Iss. 1—2. P. 169—176.
9. Lu L., Dahle A.K. Effects of combined additions of Sr and AlTiB grain refiners in hypoeutectic Al—Si foundry alloys. Mater. Sci. Eng. A. 2006. Vol. 435-436. P. 288—296.
10. Liao H., Sun G. Mutual poisoning effect between Sr and B in Al—Si casting alloys. Scripta Mater. 2003. Vol. 48. Iss. 8. P. 1035—1039.
11. Samuel A.M., Doty H.W., Valtierra S., Samuel F.H. A Metallographic study of grain refining of Sr—modified 356 alloy. Inter. J. Metalcast. 2017. Vol. 11. P. 305—320.
12. Mallapur D.G., Kori S.A., Rajendra Udupa K. Influence of Ti, B and Sr on the microstructure and mechanical properties of A356 alloy. J. Mater. Sci. 2011. Vol. 46. P. 1622—1627.
13. Kori S.A., Murty B.S., Chakraborty M. Development of an efficient grain refiner for Al—7Si alloy and its modification with strontium. Mater. Sci. Eng. A. 2000. Vol. 283. Iss. 1—2. P. 94—104.
14. Tahiri H., Mohamed S.S., Doty H.W., Valtierra S., Samuel F.H. Effect of Sr—Grain refining—Si interactions on the microstructural characteristics of Al—Si hypoeutectic alloys. Inter. J. Metalcast. 2018. Vol. 12. P. 343—361.
15. Venkateswaran S., Mallya R.M., Seshadri M.R. Effect of trace elements on the fluidity of hypereutectic aluminium silicon alloy using the vacuum suction technique. Cast. Met. 1992. Vol. 5. P. 2—5.
16. Di Sabatino M. Fluidity of aluminium foundry alloys: Dissertation for degree of PhD. Trondheim: Norwegian University of Science and Technology (NTNU), 2005.
17. Han Q.Y., Xu H.B. Fluidity of alloys under high pressure die casting conditions. Scripta Mater. 2005. Vol. 53. P. 7—10.
18. Sweatman K., Nishimura T. The fluidity of the Ni—modified Sn—Cu eutectic lead free solder. In: IPC Printed Circuits Expo, APEX and the Designers Summit. Osaka: IPC, 2006. S. 14-02-1—14-02-6.
19. Hua Q., Gao D., Zhang H., Zhang Y., Zhai Q. Influence of alloy elements and pouring temperature on the fluidity of cast magnesium alloy. Mater. Sci. Eng. A. 2007. Vol. 444. P. 69—74.
20. Akhaze M.N. Comparative studies of the fluidity of some selected non-ferrous metals and alloys. J. Ener. Techn. Policy. 2012. Vol. 2. Iss. 5. P. 15—19.
21. Di Sabatino M., Syvertsen F., Arnberg L., Nordmark A. An Improved method for fluidity measurement by gravity casting of spirals in sand moulds. Inter. J. Cast. Met. Res. 2005. Vol. 18. P. 59—62.
22. Gerasimov S.P., Titov A.Yu., Palachev V.A. Application of the vacuum fluidity test to optimize the compositions of copper-based alloys. In: Trudy VIII Mezhdunar. nauch.- prakt. konf. «Progressivnye liteinye tekhnologii» (16—
23. November 2015). Mosсow: MISIS, 2015. P. 119—122 (In Russ.).
24. Kurdyumov A.V., Belov V.D., Pikunov M.V., Chursin V.M., Gerasimov S.P., Moiseev V.S. Production of castings from non-ferrous alloys: Textbook. Mosсow: MISIS, 2011 (In Russ.).
25. Polmear I.J. Light Alloys, fourth ed. Oxford: ButterworthHeinemann, 2005.
26. ASM International Handbook Committee. ASM Handbook Vol. 15: Casting. 10 th ed. Ohio: ASM International, 1998.
27. Andersson J.O., Helander T., Hцglund L., Shi P.F., Sundman B. Thermo-Calc and DICTRA, Computational tools for materials science. CALPHAD. 2002. Vol. 26. P. 273—312.
28. ASM International Handbook Committee. ASM Handbook Vol. 2: Properties and Selection: Nonferrous alloys and special-purpose materials. 10th ed. Ohio: ASM International, 1992.
29. Image processing and analysis in Java. URL: https://imagej.nih.gov/ij/docs/menus/analyze.html (accessed: 2.01.2022).
30. Davies I.G., Dennis J.M., Hallawell A. The nucleation of aluminum grains in alloys of aluminum with titanium and boron. Metal. Trans. 1970. Vol. 1. P. 275—280.
Review
For citations:
Bazhenov V.E., Baranov I.I., Titov A.Yu., Sannikov A.V., Ozherelkov D.Yu., Lyskovich A.A., Koltygin A.V., Belov V.D. Influence of Ti, Sr and B additions on the fluidity of A356.2 aluminium alloy. Izvestiya. Non-Ferrous Metallurgy. 2022;28(4):55-66. (In Russ.) https://doi.org/10.17073/0022-3438-2021-4-55-66