Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Effect of copper concentration and annealing temperature on the structure and mechanical properties of Al–2wt.%Mn ingots and cold rolled sheets

https://doi.org/10.17073/0021-3438-2022-1-67-78

Abstract

This study focuses on the development of new Al–Cu–Mn alloys with enhanced strength and heat resistance achieved without hightemperature exposure. Seven alloys were considered including ones containing permanent Mn content of 2 % and variable Cu content of 0– 4 %. It was found that ~ 2 % Mn is completely dissolved in the solid solution of aluminum, while copper in the cast structure is distributed between the solid solution of aluminum and Al2Cu eutectic phase inclusions. It was experimentally established that when the copper content is 2 and 3 %, the solid solution of aluminum contains approximately the same amount of copper – up to 1.5 %. The deformation plasticity of experimental alloys in the cold rolling mode with the reduction rate of 80 and 95 % was investigated. It was shown that no preliminary treatment is required for alloys containing up to 3 % Cu as they feature high rolling workability. Then, the effect of heat treatment in the annealing temperature range of 200–600 °C on the structural and phase parameters of the alloys was studied. Alloy hardening in the process of multistage annealing by means of hardness measurement was analyzed. The data obtained allowed us to determine the influence of copper and analyze the thermal stability of model alloys. Tensile tests of cold rolled sheets with a thickness of 0.5 mm with a reduction rate of 95 % of alloys containing 2 and 3 % copper showed high performance. Particularly, the alloy containing 3 % Cu has strength compatible with that of the 1201 alloy in the T6 state.

About the Authors

N. O. Korotkova
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Korotkova N.O. – Cand. Sci. (Eng.), junior researcher of the Laboratory «Hybrid nanostructured materials», engineer of scientificresearch project of the Department of Metal Forming

119991, Moscow, Leninkii pr., 4



P. K. Shurkin
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Shurkin P.K. – Cand. Sci. (Eng.), engineer of scientific-research project, Department of Metal Forming

119991, Moscow, Leninkii pr., 4



S. O. Cherkasov
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Cherkasov S.O. – postgraduate student, engineer of scientific-research project, Department of Metal Forming

119991, Moscow, Leninkii pr., 4



A. A. Aksenov
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Aksenov A.A. – Dr. Sci. (Eng.), prof., Department of Metal Forming

119991, Moscow, Leninkii pr., 4



A. S. Finogeev
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Finogeev A.S. – postgraduate student, engineer of scientific-research project, Department of Metal Forming

119991, Moscow, Leninkii pr., 4



References

1. Polmear I., StJohn D., Nie J.F., Qian M. Physical metallurgy of aluminium alloys. Light Alloys. 5th ed. London: Elseiver, 2017.

2. Hatch J.E. (ed.). Aluminum: properties and physical metallurgy. Ohio: ASM Metals Park, 1984.

3. Mondol S., Kashyap S., Kumar S., Chattopadhyay K. Improvement of high temperature strength of 2219 alloy by Sc and Zr addition through a novel three-stage heat treatment route. Mater. Sci. Eng. A. 2018. Vol. 732. P. 157—166. DOI:10.1016/j.msea.2018.07.003.

4. Mondol S., Alam T., Banerjee R., Kumar S., Chattopadhyay K. Development of a high temperature high strength Al alloy by addition of small amounts of Sc and Mg to 2219 alloy. Mater. Sci. Eng. A. 2017. Vol. 687. P. 221—231. DOI:10.1016/J.MSEA.2017.01.037.

5. Aluminium and aluminium deformable alloys. Gost 4784-2019. Moscow: Standartinform, 2019 (In Russ.).

6. Mansurov Yu.N., Buravlev I.Yu., Belov N.A., Sannikov A.V. Optimization of composition and properties of heatresistant complex-alloyed aluminum alloy castings. NonFerr. Met. 2015. Vol. 39. No. 2. P. 48—55. DOI:10.17580/nfm.2015.02.09.

7. Dar S.M., Liao H. Creep behavior of heat resistant Al—Cu—Mn alloys strengthened by fine (θ′) and coarse (Al20Cu2Mn3) second phase particles. Mater. Sci. Eng. A. 2019. Vol. 763. P. 138062. DOI:10.1016/j.msea.2019.138062.

8. Belov N.A., Alabin A.N., Matveeva I.A. Optimization of phase composition of Al—Cu—Mn—Zr—Sc alloys for rolled products without requirement for solution treatment and quenching. J. Alloys Compd. 2014. Vol. 583. P. 206—213. DOI:10.1016/j.jallcom.2013.08.202.

9. Belov N.A., Alabin A.N. Energy efficient technology for Al—Cu—Mn—Zr sheet alloys. Mater. Sci. Forum. 2013. Vol. 765 P. 13—17. DOI:10.4028/www.scientific.net/MSF.765.13.

10. Belov N.A., Alabin A.N. Heat-resistant alloy based on aluminum and a method for producing deformed semifinished products from it: Pat. 2534170 (RF). 2014 (In Russ.).

11. Belov N.A., Alabin A.N. Microstructure and mechanical properties of Al—Cu—Mn cold rolled sheet alloys. In: Aluminium alloys: Their physical and mechanical properties: Proc. 11th Int. conf. of aluminium alloys. Eds. J. Hirsch, B. Scrotzki, G. Gottstein. Aachen, 2008. P. 1653—1659.

12. Toleuova A.R., Belov N.A., Smagulov D.U., Alabin A.N. Quantitative analysis of the Al—Cu—Mn—Zr phase diagram as a base for deformable refractory aluminum alloys. Met. Sci. Heat Treat. 2012. Vol. 54. No. 7/8. Р. 402—406. DOI:10.1007/s11041-012-9521-4.

13. Belov N.A. Phase composition of industrial and promising aluminum alloys. Moscow: MISIS, 2010 (In Russ.).

14. Belov N.A., Korotkova N.O., Akopyan T.K., Pesin A.M. Phase composition and mechanical properties of Al—1.5%Cu—1.5%Mn—0.35%Zr(Fe,Si) wire alloy. J. Alloys Compd. 2019. Vol. 782. P. 735—746. DOI:10.1016/j.jallcom.2018.12.240.

15. Zupanič F., Wang D., Gspan C., Bončin T. Precipitates in a quasicrystal-strengthened Al—Mn—Be—Cu alloy. Mater. Characteriz. 2015. Vol. 106. P. 93—99. DOI:10.1016/j.matchar.2015.05.013.

16. Chena J., Liao H., Wu Y., Li H. Contributions to high temperature strengthening from three types of heat-resistant phases formed during solidification, solution treatment and ageing treatment of Al—Cu—Mn—Ni alloys respectively. Mater. Sci. Eng. A. 2020. Vol. 772. P. 138819. DOI:10.1016/j.msea.2019.138819.

17. Feng Z.Q., Yang Y.Q., Huang B., Li M.H., Chen Y.X., Ru J.G. Crystal substructures of the rotation-twinned T (Al20Cu2Mn3) phase in 2024 aluminum alloy. J. Alloys Compd. 2014. Vol. 583. P. 445—451. DOI:10.1016/j.jallcom.2013.08.200.

18. Belov N.A., Alabin A.N., Yakovlev A.A. Influence of copper on formation of cast microstructure of aluminium alloys, containing 1% (wt.) of Mn. Tsvetnye Metally. 2014. No. 7. P. 66—72.

19. Chen Zh., Pei Ch., Ma C. Microstructures and mechanical properties of Al—Cu—Mn alloy with La and Sm addition. Rare Met. 2012. Vol. 31. No. 4. P. 332—335. DOI:10.1007/s12598-012-0515-6.

20. Chen Z., Chen P.P., Li S. Effect of Ce addition on microstructure of Al20Cu2Mn3 twin phase in an Al—Cu—Mn casting alloy. Mater. Sci. Eng. A. 2012. Vol. 532. P. 606—609. DOI:10.1016/j.msea.2011.11.025.

21. Mondol S., Kumar S., Chattopadhyay K. Effect of thermomechanical treatment on microstructure and tensile properties of 2219 ScMg alloy. Mater. Sci. Eng. A. 2019. Vol. 759. P. 583—593. DOI:10.1016/j.msea.2019.05.084.

22. Ber L.B. Heat treatment of aluminum alloys. London: Taylor & Francis, 2020.

23. Flattum Muggerud A.M., Li Ya., Holmestad R. Orientation studies of α-Al(Fe,Mn)Si dispersoids in 3xxx Al alloys. Mater. Sci. Forum. 2014. Vol. 794-796. P. 39—44. DOI:10.4028/www.scientific.net/MSF.794-796.39.

24. Robson J.D., Hill T., Kamp N. The effect of hot deformation on dispersoid evolution in a model 3xxx alloy. Mater. Sci. Forum. 2014. Vol. 794-796 P. 697—703. DOI:10.4028/www.scientific.net/MSF.794-796.697.

25. Belov N.A., Korotkova N.O., Cherkasov S.O., Aksenov A.A. Electrical conductivity and hardness of Al—1.5%Mn and Al—1.5%Mn—1.5%Cu (wt.%) cold-rolled sheets: comparative analysis. Tsvetnye Metally. 2020. No. 4. P. 70—76. DOI:10.17580/tsm.2020.04.08.


Review

For citations:


Korotkova N.O., Shurkin P.K., Cherkasov S.O., Aksenov A.A., Finogeev A.S. Effect of copper concentration and annealing temperature on the structure and mechanical properties of Al–2wt.%Mn ingots and cold rolled sheets. Izvestiya. Non-Ferrous Metallurgy. 2022;28(1):67-78. (In Russ.) https://doi.org/10.17073/0021-3438-2022-1-67-78

Views: 424


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)