Vapor-liquid equilibrium in the tin–lead system in primary vacuum
https://doi.org/10.17073/0022-3438-2021-1-52-59
Abstract
The boiling point method (isothermal version) was used to determine the partial pressure of saturated lead vapor over lead-tin solutions with the following lead content (the rest is tin), wt.%: 96.43, 93.02, 89.55, 80.73, 64.18, and 43.80 (93.93, 88.42, 83.08, 70.59, 50.65, and 30.87 at.%, respectively). The partial pressures of tin were calculated by the numerical integration of the Duhem–Margules equation using the auxiliary function proposed by Darken. The tin and lead partial pressure values over their melts were approximated by temperatureconcentration dependences. The total determination error was calculated as a sum of independent measurement errors: temperature, mass, pressure, approximation of experimental data, equal to 7.78 %. Based on the values of saturated lead and tin vapor partial pressures, the boundaries of liquid and vapor coexistence fields in the tin-lead system in a primary vacuum of 100 and 1 Pa were calculated and specified: boiling temperature – as a temperature at which the sum of metal partial pressures is equal to 100 and 1 Pa, vapor composition – as the ratio of metal vapor partial pressures at this temperature. It was found that the reason for the increased content of tin in lead condensate during the distillation of alloys with a lead content of less than 5 at.% (8.41 wt.%) and tin accumulation in the distillation residue is partial pressure values of tin vapor comparable to that of lead. Tin accumulation in the distillation residue should not exceed a concentration of ~ 50 wt.% during the distillation separation of lead-tin melts by lead evaporation in a real process under non-equilibrium conditions. If the specified concentration is exceeded, the condensate obtained will require repeating the evaporation-condensation process.
Keywords
About the Authors
S. A. TrebukhovKazakhstan
Trebukhov S.A. – Cand. Sci. (Eng.), deputy general director
050010, Almaty, Shevchenko str., 29/133
V. N. Volodin
Kazakhstan
Volodin V.N. – Dr. Sci. (Phys.-Math.), Dr. Sci. (Eng.), prof., сhief scientific of the Laboratory of vacuum processes
050010, Almaty, Shevchenko str., 29/133
O. V. Ulanova
Switzerland
Ulanova O.V. – Cand. Sci. (Eng.), project manager for research and development
8154, Oberglatt, Breitlosstrasse, 10
A. V. Nitsenko
Kazakhstan
Nitsenko А.V. – Cand. Sci. (Eng.), head of the Laboratory of vacuum processes
050010, Almaty, Shevchenko str., 29/133
N. M. Burabaeva
Kazakhstan
Burabaeva N.M. – Cand. Sci. (Eng.), researcher of the Laboratory of vacuum processes
050010, Almaty, Shevchenko str., 29/133
References
1. Kunaev A.M., Kozhakhmetov S.M., Vanyukov A.V., Polyvyannyi I.R., Zazubin A.I., Esyutin V.S. Fundamentals of the integrated use of raw materials from non-ferrous metallurgy (Theory, technology and development of new metallurgical processes). Alma-Ata: Nauka, 1982. P. 363—373 (In Russ.).
2. Voronin G.F., Evseev A.M. Thermodynamic properties of liquid lead and tin alloys. Zhurnal fizicheskoi khimii. 1959. Vol. 33. No. 10. P. 2245—2248 (In Russ.).
3. Kendall W.B., Hultgren R. Thermodynamics of the lead-tin system. J. Phys. Chem. 1959. Vol. 63. No. 7. Р. 1158—1160.
4. Mishra G., Kumar Rajendra. Heat contents and heat capacities of liquid lead-tin alloys. Trans. Indian Inst. Met. 1967. Vol. 20. No. 3. Р. 49—52.
5. Heumann T., Wöstmann H. Thermodynamische Daten der Blei-Zinn-Legierungen und der hypothetischen Umwandlung des tetragonalen Zinn in die kubisch flächenzentrierte Modifikation. Z. Metallkd. 1972. Bd. 63. No. 6. S. 332—341.
6. Das S.K., Ghosh A. Thermodynamic measurements in molten Pb—Sn alloys. Metall. Mater. Trans. 1972. Vol. 3. No. 4. Р. 803—806.
7. Bushmanov V.D. The determination of the heats of mixing at high temperature calorimeter. In: Physical and chemical studies of liquid metals and alloys. Sverdlovsk: UNTs AN SSSR, 1974. No. 29. P. 93—97 (In Russ.).
8. Khanna K., Singh P. Entropy of mixing of liquid metal alloys. Physics. 1982. Vol. BC114. No. 2. Р. 174—180 (In Russ.).
9. Sugimoto Eisuke, Kuwata Shigeki, Kozuka Zensaku. Measurement of activity in Pb—Sn and Pb—Sb alloys by EMF using ZrO2(Y2O3) at low temperatures. J. Min. Metall. Inst. Jpn. 1982. Vol. 98. No. 1131. P. 429—435.
10. Popel’ P.S., Presnyakova E.L., Pavlov V.A., Arkhangel’skii E.L. The domain of existence of a metastable quasieutectic structure in the Sn—Pb system. Izvestiya AN SSSR. Metally. 1985. No. 4. P. 198—201 (In Russ.)
11. Popel’ P.S., Presnyakova E.L., Pavlov V.A., Arkhangel’skii E.L. On the origin of micro-stratification of eutectic Sn—Pb alloys in the liquid state. Metally. 1985. No. 2. P. 53—56 (In Russ.).
12. Popel’ P.S., Demina E.L., Arkhangel’skii E.L. Density and resistivity of Sn—Pb melts in homogeneous and microlayered states. Izvestiya AN SSSR. Metally. 1987. No. 3. P. 52—58 (In Russ.).
13. Shukla R.K., Dubey A.N., Awasthi P. Excess surface tension and molecular interactions of Pb—Sn molten mixture at elevated temperatures. J. Mol. Liq. 2007. Vol. 135. P. 1—4. DOI:10.1016/j.mollig.2006.07.011.
14. Palatnik L.S., Fedorov G.V., Bogatov N.P. On the nature of evaporation and condensation of Pb—Sn alloy. Fizika metallov i metallovedenie. 1966. Vol. 21. No. 5. P. 704—707 (In Russ.).
15. Chen Wen, Ye Daluen, Huang Zhijiao, Huang Weishen, Ling Heging, Duan Zhigie. Thermodynamic properties of the lead-tin system. Kunming Univ. Sci. Technol. 1991. Vol. 16. No.1. Р. 34—40.
16. Hultgren R., Orr R.L., Anderson P.D., Kelley K.K. Selected values of thermodynamic properties of metals and alloys. N.Y.: J. Wiley and Sons. 1963.
17. Yong Nian Dai, Bing Yang. Vacuum metallurgy of non-ferrous metals. Beijing: Metall. Industry Press. 2000. Vol. 3. Р. 516—543.
18. Gierlotka W. Size-dependent thermodynamic description of the binary Pb—Sn system. J. Min. Metall. Sect. B. 2017. Vol. 53. Iss. 3 P. 233—238. DOI:10.2298/JMMB170525019G.
19. Gao J., Xu J., Kong L., Xu B., You Y., Ren J., Li Y., Yang B. Calculation of vapor-liquid equilibria of binary leadbased alloys in vacuum distillation using simplified molecular interaction volume model. Fluid Phase Equilibria. 2018. DOI:10.1016./j.fluid.2018.11.007.
20. Gao J., Xu J., Yang B., Kong L., Xu B., Yoy Y. Isobaric (vapor + liquid) equilibria of binary Pb—Sn and Sb—Sn system at 2 Pa. J. Min. Metall. Sect. B. 2018. Vol. 54. Iss. 2. P. 243—249. DOI:10.2298/JMMB180322012G.
21. Dai H., Tao D.-P. Application of the modified molecular interaction volume model (M-MIVM) to vapor-liquid phase equilibrium of binary alloys in vacuum distillation. Vacuum. 2019. Vol. 163. P. 342—351. DOI:10.1016/j/vacuum.2019.02.041.
22. Ren J., Xu J., Kong L., Yang B., Xu B. Model prediction of activity and vapor-liquid equilibrium of tin based alloy system. Chin. J. Nonferr. Met. 2020. Vol. 30. Iss. 10. P. 2399—2409. DOI:10.11817/j.ysxb.1004.0609.2020-39556.
23. Malyshev V.P., Turdukozhaeva A.M., Ospanov E.A., Sarkenov B. Evaporation and boiling of simple substances. Moscow: Nauchnyi mir, 2010. P. 293—298 (In Russ.).
24. Jia G., Yang B., Liu D.-C. Deeply removing lead from Pb—Sn alloy with vacuum distillation. Trans. Nonferr. Met. Soc. China. 2013. Vol. 23. No. 6. P. 1822—1831. DOI:10.1016/S1003-6326(13)62666-7.
25. Volodin V.N. Liquid-vapor phase transition in lead binary systems at low pressure. Karaganda: Arko, 2012. P. 153—158 (In Russ.).
26. Volodin V.N., Tuleushev Yu.Zh. The liquid-vapor phase transition in a copper-calcium system. Russ. J. Phys. Chem. A. 2020. Vol. 94. No. 7. P. 1300—1305. DOI:10.1134/S0036024420070304.
27. Darken L.S., Gurry R.W. Physical chemistry of metals. New York, Toronto, London: McGraw-Hill Book Company, INC. 19/53.
28. Clark J.B., Richter P.W. The determination of composition temperature-pressure phase diagrams of binary aloe systems. In: High pressure sci. and technol.: Proc. 7th Intern. AIRAPT Conf. (Le Creusot, 1979). Vol. 1. Oxford. 1980. P. 363—371.
29. Диаграммы состояния двойных металлических систем. Под ред. Н.П. Лякишева. М.: Машиностроение. 2001. Т. 3. Кн. 1. С. 794—795. Diagrams of the state of double metal systems. Ed. N.P. Lyakishev. Moscow: Mashinostroenie, 2001. Vol. 3. B. 1. P. 794—795 (In Russ.).
Review
For citations:
Trebukhov S.A., Volodin V.N., Ulanova O.V., Nitsenko A.V., Burabaeva N.M. Vapor-liquid equilibrium in the tin–lead system in primary vacuum. Izvestiya. Non-Ferrous Metallurgy. 2022;28(1):52-59. (In Russ.) https://doi.org/10.17073/0022-3438-2021-1-52-59