Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Influence of multi-pass friction stir processing on the formation of microstructure and mechanical properties of Ti6Al4V alloy

https://doi.org/10.17073/0021-3438-2022-1-39-51

Abstract

Friction stir processing (FSP) is an advanced technology for altering the surface microstructure of metals and alloys to improve mechanical and performance properties. Previous research on titanium alloy processing showed that varying the FSP process parameters (such as rotational speed, movement speed and tool contact force) significantly affects the Ti–6Al–4V microstructure evolution and mechanical properties. However, the effect of multipass FSP on the Ti–6Al–4V alloy was not studied. Therefore, this paper studies the effect of four-pass FSP of the Ti–6Al–4V titanium alloy on the microstructure evolution, mechanical properties and wear resistance of this alloy. Microstructure analysis showed that the stirring zone forms heterogeneous microstructure with dynamically recrystallized equiaxed α grains, β grains and β areas with α phase of needle and laminar type, which is associated with the stirring zone temperature gradient during FSP. It was found that an increase in the number of FSP passes up to 3 times improves the ultimate tensile strength (up to 1173 MPa) and wear resistance (by 33 %). The improved ultimate tensile strength of samples after 3 FSP passes is caused by grain size reduction in the stirring zone by 88 % compared to the initial Ti–6Al–4V alloy. It was shown that after 4 FSP passes the grain size increases and the ultimate tensile strength decreases to 686 MPa in the stirring zone, which is associated with large defects formed along the contour of metal flows. At the same time the Ti–6Al–4V wear resistance after 4 FSP passes increases by 39 % compared to the raw material.

About the Authors

A. P. Zykova
Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences (ISPMS SB RAS)
Russian Federation

Zykova A.P. – Cand. Sci. (Phys.-Math.), researcher of the Laboratory of structural design and advanced materials

634055, Russia, Tomsk, Akademicheskii pr., 2/4



A. V. Vorontsov
Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences (ISPMS SB RAS)
Russian Federation

Vorontsov A.V. – postgraduate student, junior researcher of the Laboratory of local metallurgy in additive technologies  

634055, Russia, Tomsk, Akademicheskii pr., 2/4



A. V. Chumaevskii
Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences (ISPMS SB RAS)
Russian Federation

Chumaevskii А.V. – Cand. Sci. (Eng.), researcher of the Laboratory of local metallurgy in additive technologies

634055, Russia, Tomsk, Akademicheskii pr., 2/4



D. A. Gurianov
Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences (ISPMS SB RAS)
Russian Federation

Gurianov D.A. – postgraduate student, junior researcher of the Laboratory of local metallurgy in additive technologies

634055, Russia, Tomsk, Akademicheskii pr., 2/4



A. V. Gusarova
Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences (ISPMS SB RAS)
Russian Federation

Gusarova A.V. – postgraduate student, junior researcher of the Laboratory of local metallurgy in additive technologies

634055, Russia, Tomsk, Akademicheskii pr., 2/4



N. L. Savchenko
Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences (ISPMS SB RAS)
Russian Federation

Savchenko N.L. – Dr. Sci. (Eng.), leading researcher of the Laboratory for quality control of materials and structures

634055, Russia, Tomsk, Akademicheskii pr., 2/4



E. A. Kolubaev
Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences (ISPMS SB RAS)
Russian Federation

Kolubaev E.A. – Dr. Sci. (Eng.), head of the Laboratory of local metallurgy in additive technologies

634055, Russia, Tomsk, Akademicheskii pr., 2/4



References

1. Chan K.S., Koike M., Okabe T. Modeling wear of cast Ti alloys. Acta Biomater. 2007. Vol. 3. Iss. 3. P. 383—389.

2. Lee W.-B., Lee C.-Y., Chang W.-S., Yeon Y.-M., Jung S.-B. Microstructural investigation of friction stir welded pure titanium. Mater. Lett. 2005. Vol. 59. P. 3315—3318.

3. Han Y., Chen S., Jiang X., Tao Y.B., Wang Y.X. Effect of microstructure, texture and deformation behavior on tensile properties of electrically assisted friction stir welded Ti—6Al—4V joints. Mater. Charact. 2021. Vol. 176. Art. 111141.

4. Meisnar M., Bennett J.M., Andrews D., Dodds S., Freeman R., Bellarosa R., Adams D., Norman A.F., Rohr T., Ghidini T. Microstructure characterisation of a friction stir welded hemi-cylinderstructure using Ti—6Al—4V castings. Mater. Charact. 2019. Vol. 147. P. 286—294.

5. Fall A., Monajati H., Khodabandeh A., Fesharaki M.H., Champliaud H., Jahazi M. Local mechanical properties, microstructure, and microtexture in friction stir welded Ti—6Al—4V alloy. Mater. Sci. Eng. A. 2019. Vol. 749. P. 166—175.

6. Zhang C., Ding Z., Xie L., Zhang L.-C., Wu L., Fu Y., Wang L., Lu W. Electrochemical and in vitro behavior of the nanosized composites of Ti—6Al—4V and TiO2 fabricated by friction stir process. Appl. Surf. Sci. 2017. Vol. 423. P. 331—339.

7. Zykova A.P., Tarasov S.Yu., Chumaevskiy A.V., Kolubaev E.A. A review of friction stir processing of structural metallic materials: process, properties, and methods. Metals. 2020. Vol. 10. Iss. 772. P. 1—40.

8. Wang T., Gwalani B., Shukla S., Frank M., Mishra R.S. Development of in situ composites via reactive friction stir processing of Ti—B4C system. Compos. Part B: Eng. 2019. Vol. 172. P. 54—60.

9. Jiang L., Huang W., Liu C., Chai L., Yang X., Xu Q. Microstructure, texture evolution and mechanical properties of pure Ti by friction stir processing with slow rotation speed. Mater. Charact. 2019. Vol. 148. P. 1—8.

10. Mironov S., Sato Y.S., Kokawa H. Development of grain structure during friction stir welding of pure titanium. Acta Mater. 2009. Vol. 57. P. 4519—4528.

11. Liu F.C., Liao J., Gao Y., Nakata K. Influence of texture on strain localization in stir zone of friction stir welded titanium. J. Alloys Compd. 2015. Vol. 626. P. 304—308.

12. Zhang W., Ding H., Cai M., Yang W., Li J. Ultra-grain refinement and enhanced low-temperature superplasticity in a friction stir-processed Ti—6Al—4V alloy. Mater. Sci. Eng. A. 2018. Vol. 727. P. 90—96.

13. Vakili-Azghandi M., Roknian M., Szpunar J.A., Mousavizade S.M. Surface modification of pure titanium via friction stir processing: Microstructure evolution and dry sliding wear performance. J. Alloys Compd. 2020. Vol. 816. Art. 152557.

14. Elmer J.W., Palmer T.A., Babu S.S., Specht E.D. In situ observations of lattice expansion and transformation rates of b and phases in Ti—6Al—4V. Mater. Sci. Eng. A. 2005. Vol. 391. P 104—113.

15. Boyer R., Welsch G., Collings E.W. Titanium alloys, materials properties: Handbook. ASM: International, Materials Park, 1994.

16. Liu H.J., Zhou L. Microstructural zones and tensile characteristics of friction stir welded joint of TC4 titanium alloy. Trans. Nonferr. Met. Soc. China. 2010. Vol. 20. P. 1873—1878.

17. Lippold J.C., Livingston J.J. Microstructure evolution during friction stir processing and hot torsion simulation of Ti—6Al—4V. Metall. Mater. Trans. A. 2013. Vol. 44. P. 3815—3825.

18. Edwards P., Ramulu M. Fracture toughness and fatigue crack growth in Ti—6Al—4V friction stir welds. J. Mater. Eng. Perform. 2015. Vol. 24. P. 3263—3270.

19. Zhou L., Liu H.J., Liu Q.W. Effect of rotation speed on microstructure and mechanical properties of Ti—6Al—4V friction stir welded joints. Mater. Des. 2010. Vol. 31. Iss. 5. P. 2631—2636.

20. Ji S., Li Z., Wang Y., Ma L. Joint formation and mechanical properties of back heating assisted friction stir welded Ti—6Al—4V alloy. Mater. Des. 2017. Vol. 113. P. 37—46.

21. Fall A., Fesharaki M.H., Khodabandeh A.R., Jahazi M. Tool wear characteristics and effect on microstructure in Ti—6Al—4V friction stir welded joints. Metals. 2016. Vol. 6. Iss. 275. P 1—12.

22. Ji S., Li Z., Zhang L., Wanga Y. Eliminating the tearing defect in Ti—6Al—4V alloy joint by back heating assisted friction stir welding. Mater. Lett. 2017. Vol. 188. P. 21—24.

23. Lauro A. Friction stir welding of titanium alloys. Weld. Int. 2012. Vol. 26. Iss. 1. P. 8—21.

24. Buffa G., Fratini L., Schneider M., Merklein M. Micro and macro mechanical characterization of friction stir welded Ti—6Al—4V lap joints through experiments and numerical simulation. J. Mater. Process. Technol. 2013. Vol. 213. P. 2312—2322.

25. Dong H. Tribological properties of titanium-based alloys. In: Surface engineering of light alloys. Amsterdam, Netherlands: Elsevier: Woodhead Publ. Ltd. (Ser. in metals and surface engineering), 2010. Р. 58—80.

26. Long M., Rack H.J. Friction and surface behaviour of selected titanium alloys during reciprocating-sliding motion. Wear. 2001. Vol. 249. P. 157—167


Review

For citations:


Zykova A.P., Vorontsov A.V., Chumaevskii A.V., Gurianov D.A., Gusarova A.V., Savchenko N.L., Kolubaev E.A. Influence of multi-pass friction stir processing on the formation of microstructure and mechanical properties of Ti6Al4V alloy. Izvestiya. Non-Ferrous Metallurgy. 2022;28(1):39-51. (In Russ.) https://doi.org/10.17073/0021-3438-2022-1-39-51

Views: 413


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)