Production and quality control of high-purity rare-earth metal oxides for scintillator crystals of medical detection systems
https://doi.org/10.17073/0021-3438-2022-1-27-38
Abstract
The positron emission tomography (PET) detector uses scintillator crystals to provide high image quality. Cerium-activated lutetium orthosilicates are promising crystals for PET detectors. The optical properties of resulting scintillator crystals directly depend on the impurity composition of starting materials, so they are subject to considerably stringent requirements to the basic substance content: Lu2O3 – 99.999 wt.%, CeO2 – 99.99 wt.%. A starting material used for obtaining lutetium oxide of the required purity was its concentrate with a basic substance content of 99.1 wt.% with REM carbonates containing up to 54 % cerium used to obtain cerium oxide. The paper presents process flow diagrams for obtaining high-purity Lu2O3 and CeO2 based on a combination of extraction and ion exchange methods. Extraction purification of lutetium and cerium from accompanying rare-earth impurities was carried out using Aliquat 336 and tri-n-butyl phosphate, respectively. Main operating modes of extraction cascades were calculated. The total number of stages was 17 for lutetium purification, and 20 for cerium purification. The purification technology for lutetium and cerium oxides consists in combining purification methods and varying cycles depending on the content of impurities. In this regard, it is necessary to control the quality of resulting substances practically after each stage. The chemical purity of technology products was subjected to analytical control by mass spectrometry with inductively coupled plasma and a spark excitation source.
About the Authors
O. V. YurasovaRussian Federation
Yurasova O.V. – Cand. Sci. (Eng.), head of the Laboratory of technology for obtaining substances of high purity
111524, Russia, Moscow, Electrodnaya str., 2, build. 1
D. A. Samieva
Russian Federation
Samieva D.A. – leading engineer
111524, Russia, Moscow, Electrodnaya str., 2, build. 1
E. S. Koshel
Russian Federation
Koshel E.S. – Cand. Sci. (Chem.), head of the center of JSC «Giredmet»
111524, Russia, Moscow, Electrodnaya str., 2, build. 1
119991, Russia, Moscow, Leninskii pr., 31
Y. A. Karpov
Russian Federation
Karpov Yu.A. – acad. of the Russian Academy of Sciences, Dr. Sci. (Chem.), prof., chief researcher of the Chemical analysis laboratory
119991, Russia, Moscow, Leninskii pr., 31
References
1. Tamulaitis G., Auffray E., Gola A., Korzhik M., Mazzi A., Mechinski V., Nargelas S., Talochka Y., Vaitkevicius A., Vasil’ev A. Improvement of the timing properties of Ce-doped oxyorthosilicate LYSO scintillating crystals. J. Phys. Chem. Solids. 2020. Vol. 139. P. 109356—109356.
2. Rao T.P., Biju V.M. Trace determination of lanthanides in metallurgical, environmental, and geological samples. Crit. Rev. Anal. Chem. 2000. Vol. 30. No. 2—3. P. 179—220.
3. Adachi G., Imanaka N., Kang Z.C. Binary rare earth oxides. Berlin: Springer Science + Business Media, Inc. 2005.
4. Zawisza B., Pytlakowska K., Feist B., Polowniak M., Kita A., Sitko R. Determination of rare earth elements by spectroscopic techniques: A review. J. Anal. At. Spectrom. 2011. Vol. 26. No. 12. P. 2373—2390.
5. Gorbatenko A.A., Revina E.I. A review of instrumental methods for determination of rare earth elements. 2015. Inorg. Mater. Vol. 51. No. 14. P. 1375—1388.
6. Ganjali M.R., Gupta V.K., Faridbod F., Norouzi P. Lanthanides series determination by various analytical methods. 1-st ed. Oxford: Elsevier, 2016.
7. Li B., Zhang Y., Yin M. Determination of trace amounts of rare earth elements in high-purity cerium oxide by inductively coupled plasma mass spectrometry after separation by solvent extraction. Analyst. 1997. Vol. 122. No. 6. P. 543—547.
8. Qin S., Bin H., Yongchao Q., Wanjau R., Zucheng J. Determination of trace rare earth impurities in high-purity cerium oxide by using electrothermal vaporization ICP-AES after HPLC separation with 2-ethylhexylhydrogen 2-ethylhexylphosphonate resin as the stationary phase. J. Anal. At. Spectrom. 2000. Vol. 15. No. 10. P. 1413—1416.
9. Daskalova N.N., Velichkov S., Krasnobaeva N., Slavova P. Spectral interferences in the determination of traces of scandium, yttrium and rare earth elements in «pure» rare earth matrices by inductively coupled plasma atomic emission spectrometry-I. Cerium, neodymium and lanthanum matrices. Spectrochim. Acta. Part B. 1992. Vol. 47. No. 14. P. 1595—1620.
10. Polyakov E.G. Metallurgy of rare earth metals. Moscow: Metallurgiya, 2018 (In Russ.).
11. Mikhailichenko A.I., Mikhlin E.B., Patrikeev Yu.B. Rare earth metals. Moscow: Metallurgiya, 1987 (In Russ.).
12. Liu Y., Chen J., Li D. Application and perspective of ionic liquids on rare earths green separation. Sep. Sci. Technol. 2012. Vol. 47. No. 2. P. 223—232.
13. Baba Y., Kubota F., Kamiya N., Goto M. Recent advances in extraction and separation of rare-earth metals using ionic liquids. J. Chem. Eng. 2011. Vol. 44. No. 10. P. 679—685.
14. Makanyire T., Sanchez S., Jha A. Separation and recovery of critical metal ions using ionic liquids. Adv. Manuf. 2016. Vol. 4. No. 1. P. 33—46.
15. Kubota F., Shimobori Y., Koyanagi Y., Shimojo K. Uphill transport of rare-earth metals through a highly stable supported liquid membrane based on an ionic liquid. Anal. Sci. 2010. Vol. 26. No. 3. P. 289—290.
16. Larsson K., Binneman K. Separation of rare earths by split-anion extraction. Hydrometallurgy. 2015. Vol. 156. P. 206—214.
17. Gasanov A.A., Apanasenko V.V., Semenov A.A., Yurasova O.V. Calculation of complete counter-current extraction cascade with exchange washing using Exсel. Tsvetnye Metally. 2016. No. 5. P. 44—49 (In Russ.).
18. Yurasova O.V., Samieva D.A., Fedulova T.V. Extraction technology of high pure lutetium oxide production for crystalsscintilators of lutetium orthosilicates. Mezhdunarodnyi nauchno-issledovatel’skii zhurnal. 2019. No. 11—1 (89). P. 79—82 (In Russ.).
19. Matyukha V.A. Oxalates of rare-earth elements and actinides. 3-rd ed. Moscow: IzdAT, 2008 (In Russ.).
20. Gasanov A.A., Yurasova O.V., Kharlamova T.A., Alaferdov A.F. Design of electrolyzers for the oxidation of cerium. Tsvetnye Metally. 2015. No. 8. P. 50—53. (In Russ.).
21. Galieva Zh.N., Volobuev O.I., Yachmenev A.A., Igumnov M.S., Gerya M.S., Bydanov B.A., Dronov D.V., Semenov A.A. Universal technology for the separation of rareearth concentrates (REK) in cascades of centrifugal extractors: development of technology and equipment, development of production. Uspekhi v khimii i khimicheskoi tekhnologii. 2019. Vol. 33. No. 1 (211). P. 33—35 (In Russ.).
22. Yurasova O.V., Gasanov A.A., Kharlamova T.A., Vasilenko S.A. Technology of cerium (IV) oxide extraction from rare-earth metal concentrates using electrochemical oxidation and extraction methods. Tsvetnye Metally. 2016. No. 3. P. 42—49 (In Russ.).
Review
For citations:
Yurasova O.V., Samieva D.A., Koshel E.S., Karpov Y.A. Production and quality control of high-purity rare-earth metal oxides for scintillator crystals of medical detection systems. Izvestiya. Non-Ferrous Metallurgy. 2022;28(1):27-38. (In Russ.) https://doi.org/10.17073/0021-3438-2022-1-27-38