Lithium extraction from petalite ore by chloride sublimation roasting
https://doi.org/10.17073/0021-3438-2022-1-15-26
Abstract
Pilot plant tests were carried out for the technology for chloride sublimation of lithium from petalite ore with concurrent cement clinker production. Main technical and economic indicators of lithium carbonate production were determined. Chloride sublimation roasting allows combining ore roasting and lithium sublimation with the process of Portland cement clinker production (roasting). Thus, it becomes possible to distribute energy expenditure for high-temperature firing over a much larger volume of products – clinker and lithium salts. Lithium recovered in the form of lithium chloride vapors is captured by an aqueous absorption solution, which has a much smaller volume compared to the volumes of leaching solutions in lime, sulfuric acid or autoclave alkaline technologies. Correspondingly, the flows of processed solutions are reduced, which significantly saves reagents and energy during their processing and significantly reduces the capital costs of tank equipment. Due to the high content of aluminum and silicon oxides in lithium aluminosilicate ores, it is possible to use them in the production of cement clinker instead of the clay component of the charge.
About the Author
I. M. KomelinRussian Federation
Komelin I.M. – leading expert of Industrial Technology Engineering Center
119991, Russia, Moscow, Leninkii pr., 4
References
1. Global electric vehicle market 2020 and forecasts. https://www.canalys.com/newsroom/canalys-global-electricvehicle-sales-2020.
2. Kudryavtsev P. Lithium in nature, application, methods of extraction (review). J. Sci. Israel — Technol. Adv. 2016. Vol. 18. No. 3. P. 63—83.
3. Kotsupalo N.P. Prospects for obtaining lithium compounds from natural chloride brines. Khimiya v interesakh ustoichivogo razvitiya. 2001. Vol. 9. P. 243—253 (In Russ.).
4. Karrech A., Azadi M.R., Elchalakani M., Shahin M.A., Seibi A.C. A review on methods for liberating lithium from pegmatities. Miner. Eng. 2020. Vol. 145. P. 106085. DOI:10.1016/j.mineng.2019.106085.
5. Luong V.T., Kang D.J., An J.W., Kim M.J., Tran T. Factors affecting the extraction of lithium from lepidolite. Hydrometallurgy. 2013. Vol. 134—135. P. 54—61. https://doi.org/10.1016/j.hydromet.2013.01.015.
6. https://ru.investing.com/analysis/article-200277503.
7. Melnikov V.S., Pavlishin V.I., Bugaenko V.N., Semka V.A. Rare elements of Ukraine. Mineralogicheskii zhurnal. 1998. Vol. 20. No. 1. P. 92—97 (In Russ.).
8. Kotsupalo N.P., Ryabtsev A.D., Yagol’nitser M.A., Markova V.M., Lyakhov N.Z. On the profitability of the production of products in the complex processing of lithium ores. Mineral’nye resursy Rossii. Ekonomika i upravlenie. 2008. No. 6. P. 52—56 (In Russ.).
9. Pavlenko T.V., Panchenko R.G., Omel’chuk A.A., Rudkovskaya L.M., Onishchuk S.V. Research of petalite ore from the Polokhovskoye deposit as a raw material for obtaining lithium hydroaluminate. Mineralogicheskii zhurnal (Ukraina). 2005. Vol. 27. No. 4. P. 70—75 (In Russ.).
10. Kheder R., Nil’sen R., Kherre M. In: Lithium. Moscow: Izdatel’stvo inostrannoi literatury, 1954. P. 5—22 (In Russ.).
11. Furman A.A. Inorganic chlorides. Moscow: Khimiya, 1980. Р. 30—31 (In Russ.).
12. Зеликман А.Н., Меерсон Г.А. Металлургия редких металлов. М.: Металлургия, 1973. С. 589—599. Zelikman A.N., Meerson G.A. Metallurgy of rare metals. Moscow: Metallurgiya, 1973. P. 589—599 (In Russ.).
13. Плющев В.Е., Степин Б.Д. Химия и технология соединений лития, рубидия и цезия. М.: Химия, 1970. Plyushchev V.E., Stepin B.D. Chemistry and technology of lithium, rubidium and cesium compounds. Moscow: Khimiya, 1970 (In Russ.).
14. Остроушко Ю.И., Бучихин П.И., Алексеева В.В. Литий, его химия и технология. М.: Атомиздат, 1960. Ostroushko Yu.I., Buchikhin P.I., Alekseeva V.V. Lithium, its chemistry and technology. Moscow: Atomizdat, 1960 (In Russ.).
15. Barbosa L., González J.A., Ruiz M. Extraction of lithium from β-spodumene using chlorination roasting with calcium chloride. Thermochim. Acta. 2015. Vol. 605. P. 63—67. DOI:10.1016/J.TCA.2015.02.009.
16. Barbosa L.I., Valente G., Orosco R.P., González J.A. Lithium extraction from β-spodumene through chlorination with chlorine gas. Miner. Eng. 2014. No. 56. P. 29—34. DOI:10.1016/j.mineng.2013.10.026.
17. Barbosa L.I., Valente N.G., González J.A. Kinetic study on the chlorination of β-spodumene for lithium extraction with Cl2 gas. Thermochim. Acta. 2013. Vol. 557. P. 61—67. https://doi.org/10.1016/j.tca.2013.01.033.
18. Dessemond C., Lajoie-Leroux F., Soucy G., Laroche N., Magnan J.-F. Revisiting the traditional process of spodumene conversion and impact on lithium extraction. In: Proc. first global conf. on extractive metallurgy «Extraction 2018». https://www.springerprofessional.de/role-of-researchin-non-ferrous-metallurgy-development-peter-hay/16053728?fulltextView=true.
19. Yan Q., Li Xinhai, Zhixing Wang, Wang J., Huajun Guo, Qi-yang Hu, Peng W., Xi-fei Wu. Extraction of lithium from lepidolite using chlorination roasting-water leaching process. Trans. Nonferr. Met. Soc. China. 2012. Vol. 22 (7). P. 1753—1759. DOI:10.1016/S1003-6326(11)61383-6.
20. Zhang X., Aldahri T., Tan X., Liu W., Zhang L., Tang S. Efficient co-extraction of lithium, rubidium, cesium and potassium from lepidolite by process intensification of chlorination roasting. Chem. Eng. Process.: Process Intensif. 2020. Vol. 147. P. 107777. https://doi.org/10.1016/j.cep.2019.107777.
21. Xing Z., Cheng G., Yang H., Xue X., Jiang P. Mechanism and application of the ore with chlorination treatment: A review. Miner. Eng. 2020. Vol. 154. P. 106404. https://doi.org/10.1016/j.mineng.2020.106404.
22. Margarido F., Vieceli N., Durão F., Guimarães C., Nogueira C.A. Minero-metallurgical processes for lithium recovery from pegmatitic ores. Comun. Geol. 2014. Vol. 101. Especial II. P. 795—798.
23. Fosu A.Y., Kanari N., Vaughan J., Chagnes A. Literature review and thermodynamic modelling of roasting processes for lithium extraction from spodumene. Metals. 2020. Vol. 10. P. 1312. DOI:10.3390/met10101312.
24. Zhang X., Aldahri T., Tan X., Liu W., Zhang L., Tang S. Efficient co-extraction of lithium, rubidium, cesium and potassium from lepidolite by process intensification of chlorination roasting. Chem. Eng. Process. 2020. Vol. 47. P. 107777. DOI:10.1016/j.cep.2019.107777.
25. Yan Q., Li X., Wang Z., Wu X., Guo H., Hu Q., Peng W. Wang J. Extraction of valuable metals from lepidolite. Hydrometallurgy. 2012. Vol. 117. P. 116—118. DOI:10.1016/J.HYDROMET.2012.02.004.
26. Luong V.T., Kang D.J., An J.W., Kim M.J., Tran T. Factors affecting the extraction of lithium from lepidolite. Hydrometallurgy. 2013. Vol. 134. P. 54—61. DOI:10.1016/J.HYDROMET.2013.01.015.
27. Zhang X., Aldahri T., Xiumin T., Liu W., Zhang L., Tang S. Efficient co-extraction of lithium, rubidium, cesium and potassium from lepidolite by process intensification of chlorination roasting. Chem. Eng. Process. 2020. Vol. 147. P. 107777. DOI:10.1016/j.cep.2019.107777.
28. Sorokina V.S., Reznik I.D. Thermodynamic analysis of the process of chloride sublimation of Pb, Zn, Cu, Au, Ag, and Fe. Tsvetnye Metally. 1969. No. 8. P. 34—38 (In Russ.).
29. Kudel’man B., Gasanova A., Maifaimov A. Chlorinating roasting in the production of building materials. Tashkent: Mekhnat, 1989 (In Russ.).
30. Movsesov E.E. Use of chlorine-containing waste in the production of cement. Tsvetnye Metally. 1986. No. 7. P. 91—92 (In Russ.).
31. Kulifeev V.K., Miklushevskii V.V., Vatulin I.I. Lithium. Moscow: MISIS, 2006 (In Russ.).
32. Kotsupalo N.P. Prospects for obtaining lithium compounds from natural chloride brines. Khimiya v interesakh ustoichivogo razvitiya. 2001. No. 9. P. 243—253 (In Russ.).
33. Ryabtsev A.D. Hydro-mineral raw materials are an inexhaustible source of lithium in the 21st century. Izvestiya Tomskogo politekhnicheskogo universiteta. 2004. Vol. 307. No. 7. P. 64—70 (In Russ.).
34. Handbook on the solubility of salt systems. Vol. 1. Moscow; Leningrad: Goskhimizdat, 1953 (In Russ.).
Review
For citations:
Komelin I.M. Lithium extraction from petalite ore by chloride sublimation roasting. Izvestiya. Non-Ferrous Metallurgy. 2022;28(1):15-26. (In Russ.) https://doi.org/10.17073/0021-3438-2022-1-15-26