Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Using infiltration and self-propagating high-temperature synthesis processes for manufacturing cermets. Review

https://doi.org/10.17073/0021-3438-2021-6-52-75

Abstract

Cermets are ceramic-metal composite materials (composites) with a relatively high content of ceramic phases from 15 to 85 % by volume. In the 20th century cermets were considered mainly as composites of high-temperature carbide, oxide, nitride, boride and silicide ceramic phases with metallic phases of the iron group, but in the 21st century the concept of cermets has significantly expanded due to the appearance of composites made of ceramic and metal phases with lower melting points including sulfides and MAX phases, as well as light and low-melting metals (Al, Mg, Cu, Ag, Pb, Sn). Therefore, cermets began to be considered not only as tool, heat-resistant and wear-resistant heavy structural materials, but also as light, strong structural materials for the production of vehicles, and as functional materials for various purposes. However, quite often cermets are characterized by such disadvantages as a tendency to brittle destruction, the difficulty in achieving structural uniformity and reproducibility, as well as fault detection, and the high cost of cermet manufacturing. It determines the need in their further development, research to improve the composition, structure and properties of cermets, searching for new applications, developing new manufacturing methods and reducing the cost of their production. Various cermet manufacturing methods are discussed such as solid-phase, liquid-phase, gas-phase, and in-situ methods. The methods of infiltration with molten metals, the effect of wetting, and the conditions for spontaneous infiltration are considered in more detail. The results of using the method of self-propagating high-temperature synthesis (SHS) are also described in detail including a new cermet manufacturing method proposed by the authors of this review based on the use of the SHS of a porous ceramic skeleton followed by spontaneous infiltration with molten metal.

About the Authors

A. P. Amosov
Samara State Technical University (SSTU)
Russian Federation

 Dr. Sci. (Phys.-Math.), Prof., Head of the Department of metals science, powder metallurgy, nanomaterials

443100, Samara, Molodogvardeyskaya str., 244 



E. I. Latukhin
Samara State Technical University (SSTU)
Russian Federation

 Cand. Sci. (Eng.), Associate prof., Department of metal science, powder metallurgy, nanomaterials 

443100, Samara, Molodogvardeyskaya str., 244 



E. R. Umerov
Samara State Technical University (SSTU)
Russian Federation

 Postgraduate, Department of metal science, powder metallurgy, nanomaterials 

443100, Samara, Molodogvardeyskaya str., 244 



References

1. Tinklepaugh J.R., Crandall W.B. Cermets. New York: Reinhold Publ., 1960.

2. Kislyi P.S., Bodnaruk N.I., Borovikova M.S., Zaverukha O.V., Kulina G.K., Krylia N.A., Kuzenkova M.A., Kushtalova I.P., Prikhodko L.I., Storozh B.D. Cermets. Kiev: Naukova dumka, 1985 (In Russ.).

3. Cermet Market: Global Industry Analysis 2012—2016 and Opportunity Assessment. 2017—2027. URL: https:// www.futuremarketinsights.com/reports/cermet-market (accessed: 15.11.2020).

4. Dasgupta S., Das A. Cermets. 2013. DOI: 10.13140/RG.2.1.1851.0480. URL: https://www.researchgate.net/publication/298313590_Cermets (accessed: 09.08.2021).

5. Mari D. Cermets and hardmetals. In: Encyclopedia of materials: Science and technology. 2-nd ed. Elsevier, 2001. P. 1118—1122. DOI: 10.1016/B0-08-043152-6/00209-6.

6. Mari D. Cermets and hardmetals. In: Reference module in materials science and materials engineering. Elsevier Reference Collection, 2016. DOI: 10.1016/B978-0-12-803581-8.02365-1.

7. Plucknett K. Cermets and hardmetals. Metals. 2018. Vol. 8. No. 11. Art. 963. DOI: 10.3390/met8110963.

8. Panov V.S., Konyashin I.Yu., Levashov E.A., Zaitsev A.A. Hardmetals: Textbook. Moscow: MISIS, 2019 (In Russ.).

9. Kiparisov S.S., Levinskii Yu.V., Petrov A.P. Titanium carbide: producing, properties, application. Moscow: Metallurgiya, 1987 (In Russ.).

10. Klimov D. A., Myktybekov B., Nizovtsev V. E., Ukhov P. A. Prospects of application of nanostructured composite materials based on carbides and oxides of refractory metals for aerospace objects. Trudy MAI (Electronic journal). 2011. Iss. 46 (In Russ.).

11. Panov V.S., Chuvilin A.M., Fal’kovskii V.A. Technology and properties of sintered hardmetals and articles from them: Textbook for universities. Moscow: MISIS, 2004 (In Russ.).

12. Meschter P.J., Schwartz D.S. Silicide-matrix materials for high-temperature application. JOM. 1989. Vol. 42. No. 11. P. 52—55. DOI: 10.1007/bf03220384.

13. Nabavi A., Capozzi A., Goroshin S., Frost D.L., Barthelat F. A novel method for net-shape manufacturing of chromium—chromium sulfide cermets. J. Mater. Sci. 2014. Vol. 49. No. 23. P. 8095—8106. DOI: 10.1007/s10853-014-8517-4.

14. Nabavi A., Goroshin S., Frost D.L., Barthelat F. Mechanical properties of chromium—chromium sulfide cermets fabricated by self-propagating high-temperature synthesis. J. Mater. Sci. 2015. Vol. 50. No. 9. P. 3434—3446. DOI: 10.1007/s10853-015-8902-7.

15. Hammann T., Johnson R., Riyad M.F., Gupta S. Effect of Ti3SiC2 particulates on the mechanical and tribological behavior of Sn matrix composites. In: Advanced processing and manufacturing technologies for nanostructured and multifunctional materials II. 2016. P. 65—74. DOI: 10.1002/9781119211662.ch8.

16. Amini Sh., Strock C.W., Li W. Chemistry based methods of manufacture for MAXMET composite powders: Pat. No. 2020/0003125 A1 (US). 2020.

17. Barsoum M.W. MAX phases: Properties of machinable ternary carbides and nitrides. Weinheim: Wiley-VCH, 2013.

18. MAX phases: Microstructure, properties, and applications (Ed. by I.-M. (J.) Low, Ya. Zhou). New York: Nova, 2012.

19. Hanaor D.A.H., Hu L., Kan W.H., Proust G., Foley M., Karaman, Radovic M. Compressive performance and crack propagation in Al alloy/Ti2AlC composites. Mater. Sci. Eng. A. 2016. No. 672. P. 247—256. DOI: 10.1016/j.msea.2016.06.073.

20. Dmitruk A., Naplocha K., Zak A., Strojny-Nedza A., Dieringa H., Kainer K.-U. Development of pore-free Ti—Si—C MAX/Al—Si MMC composite materials manufactured by squeeze casting infiltration. J. Mater. Eng. Perform. 2019. Vol 28. No. 10. P. 6248—6257. DOI: 10.1007/s11665-019-04390-8.

21. Ngai T. L., Zheng W., Li Yu. Effect of sintering temperature on the preparation of Cu—Ti3SiC2 metal matrix composite. Progr. Natur. Sci.: Mater. Int. 2013. Vol. 23. Iss. 1. P. 70—76. DOI: 10.1016/j.pnsc.2013.01.011.

22. Dang W., Ren S., Zhou J., Yu Y., Li Z., Wang L. Influence of Cu on the mechanical and tribological properties of Ti3SiC2. Ceram. Int. 2016. Vol. 42. Iss. 8. P. 9972—9980. DOI: 10.1016/j.ceramint.2016.03.099.

23. Oglezneva S.A., Kachenyuk M.N., Ogleznev N.D. Investigation into the structure formation and properties of materials in the copper—titanium silicon carbide system. Rus. J. Non-Ferr. Met. 2017. Vol. 58. No. 6. P. 649—655. DOI: 10.3103/S1067821217060074.

24. Zhang R., Feng K., Meng J., Su B., Ren Sh., Hai W. Synthesis and characterization of spark plasma sintered Ti3SiC2/Pb composites. Ceram. Int. 2015. Vol. 41. Iss. 9. Pt. A. P. 10380—10386. DOI: 10.1016/j.ceramint. 2015.05.013.

25. Zhang R., Feng K., Meng J., Liu F., Ren S., Hai W., Zhang A. Tribological behavior of Ti3SiC2 and Ti3SiC2/Pb composites sliding against Ni-based alloys at elevated temperatures. Ceram. Int. 2016. Vol. 42. Iss. 6. P. 7107—7117. DOI: 10.1016/j.ceramint.2016.01.099.

26. Anazi F.A., Ghosh S., Dunnigan R., Gupta S. Synthesis and tribological behavior of novel Ag- and Bi-based composites reinforced with Ti3SiC2. Wear. Vol. 376—377. Pt. B. 2017. P. 1074—1083. DOI: 10.1016/j.wear.2017.01.107.

27. Yang K., Ma H., Zhao W., Li Xi., Liu H. Investigation of the preparation and tribological behavior of a frictional interface covered with sinusoidal microchannels containing SnAgCu and Ti3SiC2. Tribol. Int. 2020. Vol. 150. Art. 106368. DOI: 10.1016/j.triboint.2020.106368.

28. Materials Science: Textbook for universities (Ed. by B.N. Arzamasov). Moscow: Bauman Moscow Technical University, 2008 (In Russ.).

29. Composite materials: Reference book (Ed. by D.M. Karpinos). Kiev: Naukova Dumka, 1985 (In Russ.).

30. Tuchinskii L.I. Composite materials obtained by impregnation. Moscow: Metallurgiya, 1986 (In Russ.).

31. Bataev A.A., Bataev V.A. Composite materials: structure, fabrication, application. Novosibirsk: NSTU, 2002 (In Russ.).

32. Kainer K.U. Metal matrix composites. Custom-made materials for automotive and aerospace engineering. Weinheim: WILEY-VCH, 2006.

33. Binner J., Chang H., Higginson R. Processing of ceramic-metal interpenetrating composites. J. Eur. Ceram. Soc. 2009. Vol. 29. P. 837—842. DOI: 10.1016/j.jeurceramsoc.2008.07.034.

34. Campbell F.C. Structural composite materials. Ohio: ASM International, 2010.

35. Cuevas A.C., Becerril E.B., Martinez M.S., Ruiz J.L. Metal matrix composites: wetting and infiltration. Cham: Springer Nature Switzerland AG, 2018. DOI:10.1007/978-3-319-91854-9.

36. Zheng Y., Wang S., You M., Tan H., Xiong W. Fabrication of nanocomposite Ti(C,N)-based cermet by spark plasma sintering. Mater. Chem. Phys. 2005. Vol. 92. No. 1. P. 64—70. DOI: 10.1016/j.matchemphys.2004.12.031.

37. Zhang H., Yan D., Tang S. Preparation and properties of ultra-fine TiCN matrix cermets by vacuum microwave sintering. Rare Metals. 2010. Vol. 29. No. 5. P. 528—532. DOI: 10.1007/s12598-010-0162-8.

38. Kumar R., Chaubey A.K., Maity T., Prashanth K.G. Mechanical and tribological properties of Al2O3—TiC composite fabricated by spark plasma sintering process with metallic (Ni, Nb) binders. Metals. 2018. Vol. 8. No. 1. P. 50. DOI: 10.3390/met8010050.

39. Suryanarayana C., Al-Aqeeli N. Mechanically alloyed nanocomposites. Progr. Mater. Sci. 2013. Vol. 58. P. 383—502. DOI: 10.1016/j.pmatsci.2012.10.001.

40. Amosov A.P., Borovinskaya I.P., Merzhanov A.G. Powder technology of self-propagating high-temperature synthesis of materials. Moscow: Mashinostroenie-1, 2007 (In Russ.).

41. Levashov E.A., Rogachev A.S., Kurbatkina V.V., Maksimov Yu.M., Yukhvid V.I. Perspective materials and technologies of self-propagating high-temperature synthesis. Moscow: MISIS, 2011 (In Russ.).

42. Levashov E.A., Mukasyan A.S., Rogachev A.S., Shtansky D.V. Self-propagating high-temperature synthesis of advanced materials and coatings. Int. Mater. Rev. 2016. DOI:10.1080/09506608.2016.1243291.

43. Muscat D., Drew Robin A.L. Modeling the infiltration kinetics of molten aluminium into porous titanium carbide. Metal. Mater. Trans. A. 1994. Vol. 25A. P. 2357—2361.

44. Derjaguin B.V., Churaev N.V., Muller V.M. Surface forces. Springer, Softcover reprint of the original (1st ed.). 2013.

45. Ryazanov S.A. A method of manufacturing master alloys based on aluminum. Pat. No. 2190682 (RF). 2002 (In Russ.).

46. Cong X.-S., Shen P., Wang Y., Jiang Q. Wetting of polycrystalline SiC by molten Al and Al—Si alloys. Appl. Surf. Sci. 2014. Vol. 317. P. 140—146. DOI: 10.1016/j.apsusc.2014.08.055.

47. Waheed M.S., Salih A.I. Wettability of Al2O3 by aluminum and Al—Mg alloys. Eng. Tech. J. 2010. Vol. 28. No. 9. P. 1771—1777.

48. Kieffer R., Schwarzkopf P. Cemented carbides. New-York: Macmillan, 1960.

49. Adebisi A.A. Metal matrix composite brake rotor: historical development and product life cycle analysis. Int. J. Autom. Mech. Eng. 2011. Vol. 4. Р. 471—480. DOI: 10.15282/ijame.4.2011.8.0038.

50. Ajay Kumar P., Rohatgi P., Weiss D. 50 Years of foundry-produced metal matrix composites and future opportunities. Int. J. Metalcast. 2020. Vol. 14. P. 291—317. DOI: 10.1007/s40962-019-00375-4.

51. An Q., X. Cong X., Shen P., Jiang Q. Roles of alloying elements in wetting of SiC by Al. J. Alloys Compd. 2019. Vol. 784. P. 1212—1220. DOI: 10.1016/j.jallcom.2019.01.138.

52. Saravan R.A., Molina J.M., Narciso J., Garcia-Cordovilla C., Louis E. Effects of nitrogen on the surface tension of pure aluminum at high temperatures. Scripta Mater. 2001. Vol. 44. P. 965—970.

53. Sepulveda P., Binner J.G.P. Processing of cellular ceramics by foaming and in situ polymerization of organic monomers. J. Eur. Ceram. Soc. 1999. Vol. 19. P. 2059—2066. DOI: 10.1016/S0955-2219(99)00024-2.

54. Mao X. Processing of ceramic foams. In: Recent advances in porous ceramics (Ed. by Uday M. Basheer Al-Naib). 2018. IntechOpen. P. 31—47. DOI: 10.5772/intechopen. 71006.

55. Mikheev R.S., Chernyshova T.A. Discretely reinforced composite materials of the Al—TiC system (review). Zagotovitelnye proizvodstva v mashinostroenii. 2008. No. 11. P. 44—53 (In Russ.).

56. Contreras A., Bedolla E., Perez R. Interfacial phenomena in wettability of TiC by Al—Mg alloys. Acta Mater. 2004. Vol. 52. P. 985—994. DOI: 10.1016/j.actamat.2003.10.034.

57. Contreras A. Wetting of TiC by Al—Cu alloys and interfacial characterization. J. Colloid Interface Sci. 2007. Vol. 311. P. 159—170. DOI: 10/1016/j.jcis.2007.02/041.

58. Leon C.A., Lopez V.H., Bedolla E., Drew R.A.L. Wettability of TiC by commercial aluminum alloys. J. Mater. Sci. 2002. Vol. 37. P. 3509—3514.

59. Contreras A., Albiter A., Bedolla E., Perez R. Processing and characterization of Al—Cu and Al—Mg base composites reinforced with TiC. Adv. Eng. Mater. 2004. Vol. 6. No. 9. P. 767—775. DOI: 10.1002/ADEM.200400102.

60. Xiaomeng F., Yin X., Wang L., Greil P., Travitzky N. Synthesis of Ti3SiC2-based materials by reactive melt infiltration. Int. J. Refract. Met. Hard Mater. 2014. Vol. 45. P. 1—7. DOI: 10.1016/J.IJRMHM.2014.02.006.

61. Bo-Lin H., Yue-Feng Zh. Microstructure and properties of TiC/Ni3Al composites prepared by pressureless melt infiltration with porous TiC/Ni3Al preforms. Mater. Manuf. Process. 2011. Vol. 26. P. 586—591. DOI:10.1080/10426910903229339.

62. Dey A., Pandey K.M. Magnesium metal matrix composites: A review. Rev Adv. Mater. Sci. 2015. Vol. 42. P. 58—67.

63. Amini S., Ni C., Barsoum M.W. Processing, microstructural characterization and mechanical properties of a Ti2AlC/nanocrystalline Mg-matrix composite. Comp. Sci. Tech. 2009. Vol. 69. Iss. 3-4. P. 414—420. DOI: 10.1016/j.compscitech.2008.11.007.

64. Amini S., Barsoum M.W. On the effect of texture on the mechanical and damping properties of nanocrystalline Mg-matrix composites reinforced with MAX phases. Mater. Sci. Eng. A. 2010. Vol. 527. Iss. 16-17. P. 3707—3718. DOI: 10.1016/j.msea.2010.01.073.

65. Zhang Y., Sun Zh., Zhou Ya. Cu/Ti3SiC2 composite: a new electrofriction material. Mater. Res. Innov. 1998. Vol. 3. No. 2. P. 80—84. DOI: 10.1007/s100190050129.

66. Rohatgi P.K., Xiang Ch., Gupta N. Aqueous corrosion of metal matrix composites. Corrosion behavior of lead-free copper/graphite particle composites. In: Reference module in materials science and materials engineering. comprehensive composite materials II. 2018. Vol. 4. P. 287—312. DOI: 10.1016/B978-0-12-803581-8.09985-9.

67. Frage N., Froumin N., Dariel M.P. Wetting of TiC by non-reactive liquid metals. Acta Mater. 2002. Vol. 50. P. 237—245. DOI: 10.1016/S1359-6454(01)00349-4.

68. Aizenshtein M., Froumin N., Nafman O., Frage N. Wetting and spontaneous infiltration: the case study of TaC/(Au, Al and Cu) compared to TiC/Cu. IOP Conf. Ser.: Mater. Sci. Eng. 2016. Vol. 133. Art. 012020. DOI: 10.1088/1757-899X/133/1/012020.

69. Lu J.R., Zhou Y., Zheng Y., Li H.Y., Li S.B. Interface structure and wetting behaviour of Cu/Ti3SiC2 system. Adv. Appl. Ceram. 2015. Vol. 114. No. 1. P. 39—44. DOI: 10.1179/1743676114Y.0000000185.

70. Gupta S., Barsoum M.W. On the tribology of the MAX phases and their composites during dry sliding: A review. Wear. 2011. Vol. 271. P. 1878—1894. DOI: 10.1016/j.wear.2011.01.043.

71. Chen G., Peng H., Silberschmidt V.V., Chan Y.C., Liu Ch., Wu F. Performance of Sn—3.0Ag—0.5Cu composite solder with TiC reinforcement: Physical properties, solderability and microstructural evolution under isothermal ageing. J. Alloys Compd. 2016. Vol. 685. P. 680—689. DOI: 10.1016/j.jallcom.2016.05.245.

72. Fu W., Song X., Tian R., Lei Yu., Long W., Zhong S., Feng J. Wettability and joining of SiC by Sn—Ti: Microstructure and mechanical properties. J. Mater. Sci. Tech. 2020. Vol. 40. No. 1. P. 15—23. DOI: 10.1016/j.jmst.2019.08.040.

73. Dezellus O., Voytovych R., Li A.P.H., Li G., Constantin F.B., Viala J.C. Wettability of Ti3SiC2 by Ag—Cu and Ag—Cu—Ti melts. J. Mater. Sci. 2010. Vol. 45. P. 2080—2084. DOI: 10.1007/s10853-009-3941-6.

74. Borovinskaya I.P., Vishnyakova G.A., Maslov V.M., Merzhanov A.G. On the possibility of obtaining composite materials in the combustion regime. In: Protsessy goreniya v khimicheskoy tekhnologii i metallurgii [Combustion processes in chemical technology and metallurgy]. Chernogolovka: OIHF of the USSR Academy of Sciences, 1975. Р. 141—149 (In Russ.).

75. Merzhanov A.G., Borovinskaya I.P., Pitjulin A.N., Ratnikov V.I., Epishin K.L., Kvanin V.L. Method for making a composite: Pat. No. 4988480А (USA). 1991.

76. Pityulin A.N., Bogatov Yu.V., Rogachev A.S. Gradient hard alloys. Int. J. Self-Prop. High-Temp. Synth. 1992. Vol. 1. No. 1. P. 111—118.

77. Yukhvid V.I. SHS-metallurgy: fundamental and applied research. Adv. Mater. Technol. 2016. No. 4. P. 23—34. DOI: 10.17277/amt.2016.04.pp.023-034.

78. Sanin V.N., Yukhvid V.I. Melt infiltration under the action of centrifugal force in high-temperature layer systems. Neorganicheskie materialy. 2005. T. 41. No. 2. P. 1—9 (In Russ.).

79. Dmitruk A., Naplocha K. Manufacturing of Al alloy matrix composite materials reinforced with MAX phases. Arch. Foundry Eng. 2018. Vol. 18. No. 2. P. 198—202. DOI: 10.24425/122528.

80. Amosov A.P., Fedotov A.F., Latukhin E.I., Novikov V.A. TiC—Al interpenetrating composites by SHS pressing. Int. J. Self-Prop. High-Temp. Synth. 2015. Vol. 24. No. 4. P. 187—191. DOI: 10.3103/S1061386215040032.

81. Fedotov A.F., Amosov A.P., Latukhin E.I., Novikov V.A. Fabrication of aluminum—ceramic skeleton composites based on the Ti2AlC MAX phase by SHS compaction. Russ. J. Non-Ferr. Met. 2016. Vol. 57. No. 1. P. 33—40. DOI: 10.3103/S1067821216010053.

82. Amosov A.P., Latukhin E.I., Lutz R.A., Titova Yu.V., Maydan D.A. SHS of aluminum-ceramic composites. In: Technologicheskoe gorenie: [Technological combustion]. (Ed. by S.M. Aldoshin, M.I. Alymov). Moscow: IPKhF RAS, 2018. P. 287—315 (In Russ.).

83. Amosov A.P., Latukhin E.I., Ryabov A.M., Umerov E.R., Novikov V.A. Application of SHS process for fabrication of copper-titanium silicon carbide composite (Cu—Ti3SiC2). J. of Physics: Conf. Ser. 2018. Vol. 1115. No. 4. Art. 042003. DOI :10.1088/1742-6596/1115/4/042003.

84. Amosov A.P., Latukhin E.I., Ryabov A.M. Applying SHS for the Fabrication of the Ti3SiC2—Ni Composite. Russ. J. Non-Ferr. Met. 2019. Vol. 60. No. 5. P. 555—565. DOI:10.3103/S1067821219050031.

85. Amosov A.P., Latukhin E.I., Umerov E.R. Method of obtaining ceramic-metal composite materials: Pat. No. 2733524 (RF). 2020 (In Russ.).

86. Latukhin E.I., Umerov E.R., Amosov A.P., Amosov E.A., Novikov V.A. Physical and chemical fundamentals of combustion synthesis of skeleton ceramic metal composites TiC—Al. AIP Conf. Proc. 2020. Vol. 2304.Art. 020013. DOI: 10.1063/5.0033883.

87. Amosov A., Amosov E., Latukhin E., Kichaev P., Umerov E. Producing TiC—Al cermet by combustion synthesis of TiC porous skeleton with spontaneous infiltration by aluminum melt. In: Proc. 7th International Congress on Energy Fluxes and Radiation Effects (EFRE 2020). 2020. P. 1057—1062. DOI: 10.1109/EFRE47760.2020.9241903.

88. Rogachev A.S., Mukasyan A.S. Combustion for material synthesis. New York: CRC Press, 2014.

89. Saravanan R.A., Molina J.M., Narciso J., Garcia-Cordovilla C., Louis E. Surface tension of pure aluminum in argon/hydrogen and nitrogen/hydrogen atmospheres at high temperatures. J. Mater. Sci. Lett. 2002. Vol. 21. P. 309—311.

90. Davis J.R. Aluminum and aluminum alloys. ASM, 1993.


Review

For citations:


Amosov A.P., Latukhin E.I., Umerov E.R. Using infiltration and self-propagating high-temperature synthesis processes for manufacturing cermets. Review. Izvestiya. Non-Ferrous Metallurgy. 2021;27(6):52-75. (In Russ.) https://doi.org/10.17073/0021-3438-2021-6-52-75

Views: 802


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)