Comparative analysis of the effect of Ni, Mn, Fe and Si additives on the microstructure and phase composition of hypereutectic aluminum-calcium alloys
https://doi.org/10.17073/0021-3438-2021-6-40-51
Abstract
A comparative analysis of the phase composition and morphology of primary crystals in hypereutectic alloys of the Al–Ca–Ni–X system (where X is Fe, Si, Mn) was carried out by calculation and experimental methods, including the construction of liquidus surfaces. Additional alloying of the base Al–6%Ca–3%Ni alloy with iron and silicon leads to the formation of coarse elongated primary crystals up to 100 μm in length. It was found that the addition of manganese, on the contrary, leads to the formation of relatively small (average size about 20 μm) compact primary crystals of two four-component phases. Presumably, they are phases based on ternary compounds Al9CaNi and Al10CaMn2. The composition of eutectics in quaternary alloys has been determined. All aluminum-calcium eutectics are characterized by a higher proportion of the second phases, a thinner structure compared to the aluminum-silicon eutectic in AK18 silumin, and are also capable of spheroidization upon heating, starting from 500 °C. The combination of compact and spherical particle morphology after annealing in the 63-2Mn alloy appears to be favorable for deformation. Comparison of the manufacturability of the experimental alloy Al–8%Ca–1%Ni–2%Mn and the grade silumin AK18 showed the advantage of the former. In terms of the totality of its characteristics, the experimental alloy can be considered as the basis for the development of hypereutectic alloys of a new generation as an alternative to piston silumins of the AK18 type. The experimental alloy, the microstructure of which is characterized by a compact morphology and small size of primary crystals and a fine structure of the eutectic, in contrast to hypereutectic silumins, does not require special modification.
Keywords
About the Authors
N. A. BelovRussian Federation
Dr. Sci. (Eng.), Prof., Department of metal forming, National University of Science and Technology
119991, Moscow, Leninskii pr., 4
E. A. Naumova
Russian Federation
Cand. Sci. (Eng.), Docent, Department of metal forming
119991, Moscow, Leninskii pr., 4
V. V. Doroshenko
Russian Federation
Cand. Sci. (Eng.), Engineer of Department of metal forming, Junior research scientist of Laboratory of catalysis and processing of hydrocarbons
119991, Moscow, Leninskii pr., 4
M. A. Barykin
Russian Federation
Engineer, Department of metal forming
119991, Moscow, Leninskii pr., 4
References
1. Hatch J.E. Aluminum: Properties and physical metallurgy. Ohio: American Society for Metals, 1984.
2. Polmear I., StJohn D., Nie J.F., Qian M. Physical metallurgy of aluminium alloys. In: Light alloys (5th ed.). London: Elseiver, 2017. P. 31—107.
3. Gloria A., Montanari R., Richetta M., Varone A. Alloys for aeronautic applications: state of the art and perspectives. Metals. 2019. Vol. 9. P. 662. DOI: 10.3390/met9060662.
4. Graf A. Aluminum alloys for lightweight automotive structures. In: Materials, design and manufacturing for lightweight vehicles (2nd ed.). London, UK: Elsevier, Woodhead Publishing in Materials, 2021. P. 97—123. DOI: 10.1016/B978-0-12-818712-8.00003-3.
5. Jorstad J., Apelian D. Hypereutectic Al—Si alloys: Practical casting considerations. Inter. Metalcast. 2009. No. 3. Р. 13—36. DOI: 10.1007/BF03355450.
6. Belov N.A., Belov V.D., Savchenko S.V., Samoshina M.E., Chernov V.A., Alabin A.N. Piston silumins. Moscow: Ruda i metally, 2011 (In Russ.).
7. Zhang H-h., Duan Hm., Shao G., Xu L. Microstructure and mechanical properties of hypereutectic Al—Si alloy modified with Cu—P. Rare Metal. 2008. Vol. 27. No. 1. P. 59—63.
8. Zhu Q., Rassili A., Midson S.P., Hu X.G. Thixoforming of hypereutectic AlSi12Cu2NiMg automotive pistons. Sol. St. Phen. 2019. Vol. 285. P. 446—452. DOI: 10.4028/www.scientific.net/SSP.285.446.
9. Prudnikov A.N. Deformable heatproof transeutectic silumin for pistons. Steel Trans. 2009. Vol. 39. No. 456. P. 456—459. DOI: 10.3103/S0967091209060047.
10. Naumova E.A. Use of calcium in alloys: From modifying to alloying. Russ. J. Non-Ferr. Met. 2018. Vol. 59. No. 3.P. 284—298. DOI: 10.3103/S1067821218030100.
11. Belov N.A., Naumova E.A., Akopyan T. K. Eutectic alloys based on aluminum: new alloying systems. Moscow:Ruda i metally, 2016 (In Russ.).
12. Belov N.A., Naumova E.A., Akopyan T. K., Doroshenko V.V. Phase diagram of the Al—Ca—Fe—Si system and its application for the design of aluminum matrix composites. JOM. 2018. Vol. 70(11). P. 2710—2715. DOI: 10.1007/s11837-018-2948-3.
13. Belov N.A., Naumova E.A., Bazlova T.A., Doroshenko V.V. Phase composition and hardening of castable Al—Ca—Ni—Sc alloys containing 0.3 % Sc. Metal. Sci. Heat Treat. 2017. Vol. 59. P. 76—81. DOI: 10.1007/s11041-017-0106-0.
14. Naumova E.A., Akopyan T.K., Letyagin N.V., Vasina M.A. Investigation of the structure and properties of eutectic alloys of the Al—Ca—Ni system containing REM. Non-ferrous Metals. 2018. No. 2. P. 24—29. DOI: 10.17580/nfm.2018.02.05.
15. Petzow G., Effenberg G. Ternary alloys: A comprehensive compendium of evaluated constitutional data and phase diagrams. Berlin, Weinheim: Wiley-VCH, 1990. Vol. 3.
16. Mondolfo L.F. Aluminium alloys: Structure and properties. London: Butterworths, 1976. P. 806—841.
17. Glazoff M., Khvan A., Zolotorevsky V., Belov N., Dinsdale A. Casting aluminum alloys: Their physical and mechanical metallurgy (2-nd ed.). London, UK: Elsevier, 2018. DOI: 10.1016/C2015-0-02446-7.
18. Naumova E. A., Petrov М. А., Stepanov B. A., Vasilieva E. S. Stamping with torsion of the Al — Ca alloy workpiece with high concentration of Al4Ca. Tsvetnye metally. 2019. No. 1. P. 66—71 (In Russ.).
19. Rogachev S.O., Naumova E.A., Vasileva E.S., Magurina M.Yu., Sundeev R.V., Veligzhanind A.A. Structure and mechanical properties of Al—Ca alloys processed by severe plastic deformation. Mater. Sci. Eng. A. 2019. Vol. А767. Art. 138410. DOI: 10.1016/j.msea.2019.138410.
20. Rogachev S.O., Naumova E.A., Sundeev R.V., Tabachkova N.Yu. Structural and phase transformations in a new eutectic Al—Ca—Mn—Fe—Zr—Sc alloy induced by high pressure torsion. Mater. Lett. 2019. Vol. 243. P. 161—164. DOI: 10.1016/j.matlet.2019.02.043.
21. Thermo-Calc Software TTAL5 Al-Alloys. URL: www.thermocalc.com (accessed: 17.02.2019).
22. Shelekhov E.V., Sviridova T.A. Programs for X-ray analysis of polycrystals. Metal. Sci. Heat Treat. 2000. Vol. 42. P. 309—313. DOI: 10.1007/BF02471306.
23. Belov N.A. State diagrams of ternary and quaternary systems. Moscow: MISIS, 2007 (In Russ.).
Review
For citations:
Belov N.A., Naumova E.A., Doroshenko V.V., Barykin M.A. Comparative analysis of the effect of Ni, Mn, Fe and Si additives on the microstructure and phase composition of hypereutectic aluminum-calcium alloys. Izvestiya. Non-Ferrous Metallurgy. 2021;27(6):40-51. (In Russ.) https://doi.org/10.17073/0021-3438-2021-6-40-51