Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Sn–Pb alloy processing for commercial tin production

https://doi.org/10.17073/0021-3438-2021-6-12-21

Abstract

The aim of the research is to develop an optimal method for Sn–Pb alloy processing to obtain a marketable product – high-grade tin O1–O3 (Sn  98.5 %). Laboratory studies were conducted on the refining of the Sn–Pb alloy with the following composition, wt.%: 53–60 Sn; 18–29 Pb, first by vacuum distillation (t = 1085÷1300 °C, P = 15÷100 Рa; τ = 3÷36 h) for As, Sb and Pb sublimation, then by reagent deposition with elemental sulfur and aluminum as part of the Al–Sn master alloy in the presence of NH4Cl for Cu, Fe and Sb separation. This resulted in obtaining a Sn-containing residue (yield ~60 %) of the following composition, wt.%: 92.39 Sn; 0.46 Pb that was subjected to reagent refining to obtain O3 grade tin (metal yield ~68 %) with the following composition, wt.%: 99.5 Sn; 0.009 Pb. It was found that it is feasible to carry out refining from a preliminarily decopperized Sn–Pb alloy to obtain a finished O1 grade product with a direct extraction of 90 %. A schematic diagram was developed and recommendations were formulated for the process regulations on Sn–Pb alloy processing to obtain commercial tin and recover resulting intermediate products and waste. A furnace with separate production of As, Sb, Pb condensates with the following composition, wt.%: 94.2–98.3 As; 5.1–14.5 Sb; 78.9–86.4 Pb, respectively, was chosen as a vacuum distillation unit. The economic effect of processing ~480 ton/year of Sn–Pb alloy (~50.8 % Sn) with the production of ~235 ton/year of O1–O3 grade tin is ~39 million rubles/year.

About the Authors

A. A. Korolev
JSC «Uralelectromed»
Russian Federation

 Cand. Sci. (Eng.), Main engineer

624091,  Sverdlovsk reg., Verkhnyaya Pyshma, Uspenskii pr., 1 



K. L. Timofeev
JSC «Uralelectromed»; UMMC Technical University
Russian Federation

 Cand. Sci. (Eng.), Head of the Department, Associate professor of the Department of metallurgy

624091,  Sverdlovsk reg., Verkhnyaya Pyshma, Uspenskii pr., 3 



G. I. Maltsev
JSC «Uralelectromed»
Russian Federation

 Dr. Sci. (Eng.), Senior scientific officer, Chief specialist of the Research Center 



S. A. Krayukhin
UMMC Technical University
Russian Federation

 Cand. Sci. (Eng.), Director of Science 



References

1. Erez B.-Y., Yitzhak V., Brink Edwin C. M., Ron B. A new Ghassulian metallurgical assemblage from Bet Shemesh (Israel) and the earliest leaded copper in the Levant. J. Archaeolog. Sci.: Reports. 2016. Vol. 9. P. 493—504.

2. Yin N.-H., Sivry Y., Avril C. Bioweathering of lead blast furnace metallurgical slags by pseudomonas aeruginosa. International Biodeterioration & Biodegradation. 2014. Vol. 86. Pt. C. P. 372—381.

3. Capannesi G., Rosada A., Avino P. Elemental characterization of impurities at trace and ultra-trace levels in metallurgicallead samples by INAA. Microchem. J. 2009. Vol. 93. No. 2. P. 188—194.

4. Sun B., Yang C., Gui W. A discussion of the control of nonferrous metallurgical processes. IFAC-рapers on line. 2015. Vol. 48. No. 17. P. 80—85.

5. Yin N.-H., Sivry Y., Benedetti M.F. Application of Zn isotopes in environmental impact assessment of Zn—Pb metallurgical industries: A mini review. Appl. Geochem. 2016. Vol. 64. P. 128—135.

6. Sethurajan M., Huguenot D., Jain R. Leaching and selective zinc recovery from acidic leachates of zinc metallurgical leach residues. J. Hazard. Mater. 2017. Vol. 324. Pt. A. P. 71—82.

7. Yu Z., Ma W. , Xie K. Life cycle assessment of grid-connected power generation from metallurgical route multicrystalline silicon photovoltaic system in China. Appl. Energy. 2017. Vol. 185. Pt. 1. P. 68—81.

8. Roest R, Lomas H., Hockings K. Fractographic approach to metallurgical coke failure analysis. Pt. 1: Cokes of single coal origin. Fuel. 2016. Vol. 180. P. 785—793.

9. Shi X., Zhang J., Yang X. Metallurgical leaching of metal powder for facile and generalized synthesis of metal sulfide nanocrystals. Colloid. Surf. A: Phys. Chem. Eng. Aspects. 2016. Vol. 497. P. 344—351.

10. Karelov S.V., Naboichenko S.S., Mamyachenkov S.V. Prospects of complex processing of lead industrial products of copper-smelting production. In: Proc. Russ.- Ind. Symp. «Metallurgy of non-ferrous and rare metals» (Russia, Moscow, 25 Feb.—02 Mar. 2002). Moscow: RAN, 2002. Р. 31—35 (In Russ.).

11. Chinkin E.V. Research and development of technology for utilization of valuable components of lead cakes of zinc hydrometallurgical production: Abstrct of a thesis of the diss. … Cand. Sci. (Eng.). Moscow: Gintsvetmet, 2002 (In Russ.).

12. Tarasov A.V., Besser A.D., Chirkin E.V. Research for the development of a technological scheme for processing lead cakes with the extraction of lead, zinc, copper and precious metals. Tsvetnaya metallurgiya. 2002. No. 10. P. 26—32 (In Russ.).

13. Parfenov A.N. Method of refining tin-lead solder: Рat. 2230127 (RF). 2002 (In Russ.).

14. Yang T., Zhu P., Liu W., Chen L., Zhang D. Recovery of tin from metal powders of waste printed circuit boards. Waste Management. 2017. Vol. 68. P. 449—457.

15. Jia G., Yang B., Liu D. Deeply removing lead from Pb—Sn alloy with vacuum distillation. Trans. Nonferr. Met. Soc. China. 2013. Vol. 23. No. 6. P. 1822—1831.

16. Chekushin V.S., Baksheev S.P., Oleynikova N.V. Method of oxidative alkaline refining of lead: Рat. 2259411 (RF). 2003 (In Russ.).

17. Skopov G.V., Starkov K.E., Kharitidi G.P., Jakornov S.A., Bulatov V.K. Method for processing sulfide copper-leadzinc materials: Рat. 2520292 (RF). 2012 (In Russ.).

18. Murach N.N., Sevryukov N.N., Polkin S.I., Bykov Yu.A. Metallurgy of tin. Moscow: Metallurgizdat, 1964.

19. Pyrometallurgical methods of tin refining. URL: http://metal-archive.r u/tyazhelye-metally/1588-pirometallurgicheskie-sposoby-rafinirovaniya-olova. html (accessed: 30.12.2020) (In Russ.).

20. Dyakov V.E., Suturin S.N., Dolgov A.V., Cherkassky R.I., Klimentov B.V., Kuvshinov V.A., Litovchenko A.P., Kasharnov N.P., Sadykov Z.G., Sulakov V.P. Method of processing tin materials: Рat. 840176 (RF). 1979 (In Russ.).

21. Dyakov V.E. Improvement of technology of refining of the molten tin from the arsenic filter. Scientia. Tekhnika. 2016. No. 4. Р. 24—29 (In Russ.).

22. Kondratenko L.A. Method of obtaining high-purity tin: Рat. 2081196 (RF). 1992 (In Russ.).

23. Kotelnikova L.A., Romanov I.A. Fire method of refining tin from bismuth: Author’s certificate 82203 (USSR). 1949 (In Russ.).

24. Saenko M.I. Method of cleaning tin from zinc impurities: Author’s certificate 63326 (USSR). 1941 (In Russ.).

25. Roth A. Physico-chemical phenomena in vacuum techniques. In: Vacuum Technology (Third, Updated and Enlarged Edition). North Holland: Elsevier B.V., 1990. P. 149—199.

26. Nabojchenko S.S., Korolev A.A., Maltsev G.I., Timofeev K.L. Complex processing of lead-containing industrial products by vacuum distillation. Tsvetnye metally. 2020. No. 8. P. 24—31 (In Russ.).

27. Dyakov V.E., Lelyuk V.G., Koryukova L.M., Stepanov G.I. Method of tin refining from antimony and arsenic: Author’s certificate 588762 (USSR). 1976 (In Russ.).

28. Belyaev D.V. Metallurgy of tin. Moscow: Metallurgizdat, 1960 (In Russ.).

29. Dyakov V.E. Improvement of technology of refining of the molten tin from the arsenic filtration. Nauchnyi al’manakh. 2016. Nо. 8-1(22). Р. 208—216 (In Russ.).


Review

For citations:


Korolev A.A., Timofeev K.L., Maltsev G.I., Krayukhin S.A. Sn–Pb alloy processing for commercial tin production. Izvestiya. Non-Ferrous Metallurgy. 2021;27(6):12-21. (In Russ.) https://doi.org/10.17073/0021-3438-2021-6-12-21

Views: 972


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)