Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Influence of high-temperature treatment conditions on the structure and tribological properties of a nickel-based laser clad coating

https://doi.org/10.17073/0021-3438-2021-5-67-77

Abstract

Laser cladding featuring by a minimal thermal impact on the substrate is an advanced method of restoring the working dimensions of parts operated under wear conditions. Ni–Cr–B–Si system coatings can be used in parts operated at high temperatures. The research was aimed to study the influence of heating and subsequent cooling conditions during high-temperature treatment on the structural phase state formation features of the coating obtained by PG-SR2 powder laser cladding (chemical composition, wt.%: 14.8Cr; 2.1B; 2.9Si; 2.6Fe; 0.48C; the rest is Ni), and properties achieved in this process (hardness and tribological properties when sliding on the fixed corundum abrasive). Samples with the clad layer were heated at 1050 °С (holding for 1 h) with subsequent cooling in water (which made it possible to record structural transformations under high-temperature heating), in air, in a muffle furnace and in a vacuum furnace. It was shown that the cooling rate during the high-temperature treatment of the laser clad PG-SR2 coating has a significant effect on the formed structure and properties. High-temperature heating leads to a partial diffusive dissolution of Ni3B nickel borides and Cr23C6 chromium carbides in a solid solution and a corresponding decrease in hardness, an increase in abrasive wear intensity and friction coefficient. Cooling rate deceleration from 1050 °C when samples are cooled in air, muffle and vacuum furnaces leads to the release of CrB chromium borides and Ni3Si nickel silicides that were absent in the clad coating structure. High-strength CrB borides with hardness equal to or even higher than that of the corundum abrasive limit the development of the microcutting mechanism during abrasive wear. Large chromium carbides and borides formed during slow cooling in the furnace form wear-resistant frame-like structures. This leads to an increase in hardness and abrasive wear resistance to levels that exceed the features of the original clad coating.

About the Authors

N. N. Soboleva
Institute of Engineering Science of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Cand. Sci. (Eng.), senior researcher of Laboratory of constructional material science

620049, Russia, Ekaterinburg, Komsomol′skaya str., 34



A. V. Makarov
Institute of Engineering Science of the Ural Branch of the Russian Academy of Sciences; M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences; Ural Federal University
Russian Federation

Chief researcher of laboratory of constructional material science Institute of Engineering Science of the UB RAS; Dr. Sci. (Eng.), corresponding member of the RAS; head of materials science department, head of mechanical properties laboratory, M.N. Mikheev Institute of Metal Physics of the UB RAS; professor of the Department of welding production technology, Ural Federal University

620049, Russia, Ekaterinburg, Komsomol′skaya str., 34

620108, Russia, Ekaterinburg, S. Kovalevskaya str., 18

620002, Russia, Ekaterinburg, Mira str., 19



References

1. Kiryukhantsev-Korneev F.V., Sytchenko A.D., Levashov E.A. Comparative study of coatings formed by electrospark alloying using TiC—NiCr and TiC—NiCr—Eu2O3 electrodes. Russ. J. Non-Ferr. Met. 2019. Vol. 60. P. 1—11. DOI: 10.3103/S1067821219060099.

2. Biryukov V.P., Bazlova T.A. Experimental and computational determination of the wear resistant coefficient for coatings with nanodispersed carbide particles added by laser surfacing. Russ. J. Non-Ferr. Met. 2020. Vol. 61. P. 739—744. DOI: 10.3103/S1067821220060048.

3. Pugacheva N.B., Bykova T.M., Trushina E.B., Malygina I.Yu. The structural state and properties of a deposited coating for an internal combustion engine valve. Diagn., Res. Mech. Mater. Struct. 2018. Iss. 5. P. 74—85. DOI: 10.17804/2410-9908.2018.5.074-085.

4. Biryukov V.P. Wear of a laser-surfaced steel shaft and a slip-bearing bush. Russ. Eng. Res. 2015. Vol. 35. P. 249— 252. DOI: 10.3103/S1068798X15040073.

5. Gao W., Chang C., Li G., Xue Y., Wang J., Zhang Z., Lin X. Study on the laser cladding of FeCrNi coating. Optik. 2019. Vol. 178. P. 950—957. DOI: 10.1016/j.ijleo.2018.10.062.

6. Frazier W.E. Metal additive manufacturing: A review. J. Mater. Eng. Perform. 2014. Vol. 23. P. 1917—1928. DOI: 10.1007/s11665-014-0958-z.

7. Muvvala G., Patra Karmakar D., Nath A.K. Online monitoring of thermo-cycles and its correlation with microstructure in laser cladding of nickel based super alloy. Optics Laser Techn. 2017. Vol. 88. P. 139—152. DOI: 10.1016/j.optlaseng.2016.08.005.

8. Loginova I.S., Bykovskiy D.P., Solonin A.N., Prosviryakov A.S., Cheverikin V.V., Pozdniakov A.V., Petrovskiy V.N. Peculiarities of the microstructure and properties of parts produced by the direct laser deposition of 316L steel powder. Russ. J. Non-Ferr. Met. 2019. Vol. 60. P. 87—94. DOI: 10.3103/S1067821219010085.

9. Gómez-del Río T., Garrido M.A., Fernádez J.E., Cadenas M., Rodríguez J. Influence of the deposition techniques on the mechanical properties and microstructure of NiCrBSi coatings. J. Mater. Proces. Technol. 2008. Vol. 204. P. 304—312. DOI: 10.1016/j.jmatprotec.2007.11.042.

10. Fernández E., Cadenas M., González R., Navas C., Fernández R., Damborenea J.D. Wear behavior of laser clad NiCrBSi coating. Wear. 2005. Vol. 259. P. 870—875. DOI: 10.1016/j.wear.2005.02.063.

11. Pribytkov G.A., Firsina I.A., Korzhova V.V., Krinitcyn M.G, Polyanskaya A.A. Synthesis of TiC—NiCrBSi binder alloy composite powders for cladding and deposition of wear-resistant coatings. Russ. J. Non-Ferr. Met. 2019. Vol. 60. P. 282—2894. DOI: 10.3103/S1067821219030118.

12. Chen L., Wang H., Zhao C., Lu S., Wang Z., Sha J., Chen S., Zhang L. Automatic remelting and enhanced mechanical performance of a plasma sprayed NiCrBSi coating. Surf. Coat. Technol. 2019. Vol. 369. P. 31—43. DOI: 10.1016/j.surfcoat.2019.04.052.

13. Li Q., Zhang D., Lei T., Chen C., Chen W. Comparison of laser-clad and furnace-melted Ni-based alloy microstructures. Surf. Coat. Technol. 2001. Vol. 137. P. 122—135. DOI: 10.1016/S0257-8972(00)00732-5.

14. Islak S., Ulutan M., Buytoz S. Microstructure and wear properties of hot-pressed NiCrBSi/TiC composite materials. Russ. J. Non-Ferr. Met. 2020. Vol. 61. P. 571—582. DOI: 10.3103/S1067821220050053.

15. Navas С., Colaco R., Damborenea J., Vilar R. Abrasive wear behavior of laser clad and flame sprayed—melted NiCrBSi coatings. Surf. Coat. Technol. 2006. Vol. 200. P. 6854— 6862. DOI: 10.1016/j.surfcoat.2005.10.032.

16. González R., Cadenas M., Fernández R., Cortizo J.L., Rodríguez E. Wear behaviour of flame sprayed NiCrBSi coating remelted by flame or by laser. Wear. 2007. Vol. 262. P. 301—307. DOI: 10.1016/j.wear.2006.05.009.

17. Guo Ch., Zhou J., Chen J., Zhao J., Yu Y., Zhou H. High temperature wear resistance of laser cladding NiCrBSi and NiCrBSi/WC—Ni composite coatings. Wear. 2011. Vol. 270. P. 492—498. DOI: 10.1016/j.wear.2011.01.003.

18. Makarov A.V., Soboleva N.N., Malygina I.Yu., Osintseva A.L. Formation of wear-resistant chromium-nickel coating with extra high thermal stability by combined laser-and-heat treatment. Met. Sci. Heat Treat. 2015. Vol. 57. P. 161—168. DOI: 10.1007/s11041-015-9856-8.

19. Makarov A.V., Soboleva N.N., Malygina I.Yu., Kharanzhevskiy E.V. Improving the properties of a rapidly crystallized NiCrBSi laser clad coating by high-temperature processing. J. Crys. Growth. 2019. Vol. 525. Art. 125200. DOI: 10.1016/j.jcrysgro.2019.125200.

20. Savrai R.A., Makarov A.V., Soboleva N.N., Malygina I.Yu., Osintseva A.L. The behavior of gas powder laser clad NiCrBSi coatings under contact loading. J. Mater. Eng. Perform. 2016. Vol. 25. P. 1068—1075. DOI: 10.1007/s11665-016-1925-7.

21. Makarov A.V., Soboleva N.N., Malygina I.Yu. Role of the strengthening phases in abrasive wear resistance of laser-clad NiCrBSi coatings. J. Frict. Wear. 2017. Vol. 38. P. 272—278. DOI: 10.3103/S1068366617040080.

22. Lebaili S., Durand-Charre M., Hamar-Thibault S. The metallurgical structure of as-solidified Ni—Cr—B— Si—C hardfacing alloys. J. Mater. Sci. 1988. Vol. 23. P. 3603—3611. DOI: 10.1007/BF00540502.

23. Kim H.-J., Hwang S.-Y., Lee C.-H., Juvanon P. Assessment of wear performance of flame sprayed and fused Ni-based coatings. Surf. Coat. Technol. 2003. Vol. 172. P. 262—269. DOI: 10.1016/S0257-8972(03)00348-7.

24. Gorunov A.I., Gilmutdinov A.Kh. Study of the effect of heat treatment on the structure and properties of the specimens obtained by the method of direct metal deposition. Int. J. Adv. Manuf. Technol. 2016. Vol. 86. P. 2567—2574. DOI: 10.1007/s00170-016-8405-y.

25. Khruschov M.M. Principles of abrasive wear. Wear. 1974. Vol. 28. P. 69—88. DOI: 10.1016/0043-1648(74)90102-1.


Review

For citations:


Soboleva N.N., Makarov A.V. Influence of high-temperature treatment conditions on the structure and tribological properties of a nickel-based laser clad coating. Izvestiya. Non-Ferrous Metallurgy. 2021;27(5):67-77. (In Russ.) https://doi.org/10.17073/0021-3438-2021-5-67-77

Views: 354


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)