Autoclave dissolution of platinum metals in hydrochloric acid oxidizing media
https://doi.org/10.17073/0021-3438-2021-5-50-57
Abstract
The paper provides the results obtained in the study of the features of metallic platinum, rhodium and iridium dissolution in hydrochloric acid solutions under hydrothermal autoclave conditions. Hydrogen peroxide was used as an oxidizing agent. Solid and liquid phases were brought into contact after reaching a predetermined temperature, which is critically important in the study of rhodium black and platinum plate dissolution kinetics due to the high rates of these processes. The concentrations of metals in solutions were determined by atomic absorption spectroscopy and inductively coupled plasma mass spectrometry. The forms of rhodium, iridium, and platinum chlorocomplexes in solutions were determined using the spectrophotometric method. As a result of the experiments, the conditions of platinum plate and rhodium quantitative dissolution (in the form of affined powder and a plate) were determined and it was shown that at 210 °C in 6M hydrochloric acid as a medium with the addition of 5 vol.% hydrogen peroxide, iridium taken in the form of affined powder went into the solution by 50 % within more than 50 h, while the platinum plate dissolved completely at 130 °C in about 120 min. Kinetic data analysis using the shrinking core model showed that rhodium black and affined rhodium and iridium powders dissolve under autoclave conditions in a kinetic mode. The results obtained can be used both in analytical chemistry for the quantitative determination of inert platinum metals and in refining production to improve the technology for processing raw materials containing platinum group metals (PGMs) and to optimize approaches to the synthesis of pure chlorocomplex compounds of PGMs.
About the Authors
N. V. BelousovaRussian Federation
Dr. Sci. (Chem.), prof., head of the Department of metallurgy of non-ferrous metals
660041, Russia, Krasnoyarsk, Svobodnyi pr., 79
O. V. Belousov
Russian Federation
Prof. of the Department of metallurgy of non-ferrous metals; Dr. Sci. (Chem.), leading researcher of Laboratory of hydrometallurgical processes
660041, Russia, Krasnoyarsk, Svobodnyi pr., 79
660036, Russia, Krasnoyarsk, Akademgorodok, 50/24
R. V. Borisov
Russian Federation
Associate prof. of the Department of mineral processing; Cand. Sci. (Chem.), researcher of the Laboratory of hydrometallurgical processes
660041, Russia, Krasnoyarsk, Svobodnyi pr., 79
660036, Russia, Krasnoyarsk, Akademgorodok, 50/24
A. A. Akimenko
Russian Federation
Postgraduate student of the Laboratory of hydrometallurgical processes
660036, Russia, Krasnoyarsk, Akademgorodok, 50/24
References
1. Buslaeva T.M., Simanova S.A. State of platinum metals in hydrochlorideacidic and chlorides solutions. Palladium, platinum, rhodium and iridium. Russ. J. Coord. Chem. 1999. Vol. 25. No.3. P. 151—162.
2. Mpinga C.N., Eksteen J.J., Aldrich C., Dyer L. Direct leach approaches to Platinum Group Metal (PGM) ores and concentrates: A review. Miner. Eng. 2015. No. 78. P. 93— 113. https://doi.org/10.1016/j.mineng.2015.04.015.
3. Sahu P., Jena M.S., Mandre N.R., Venugopal R. Platinum group elements mineralogy, beneficiation, and extraction practices — An overview. Miner. Process. Extract. Metall. Rev. 2020. P. 1—14. https://doi.org/10.1080/08827508.2020.1795848.
4. Gökelma M., Birich A., Stopic S., Friedrich B. A review on alternative gold recovery re-agents to cyanide. J. Mater. Sci. Chem. Eng. 2016. Vol. 4. No. 8. P. 8—17. https://doi.org/10.4236/msce.2016.48002.
5. Yu L., Li S., Liu Q., Deng J., Luo B., Liang Yu., Zhao L., Lai H. Gold recovery from refractory gold concentrates by pressure oxidation pre-treatment and thiosulfate leaching. Physicochem. Probl. Miner. Process. 2019. Vol. 55. No. 2. P. 537—551. https://doi.org/10.5277/ppmp18166.
6. Zaytsev P.V., Fomenko I.V., Chugaev L.V., Shneerson Ya.M. Pressure oxidation of double refractory raw materials in the presence of limestone. Tsvetnye Metally. 2015. No. 8. P. 41—49. https://doi.org/10.17580/tsm.2015.08 .05.
7. Simmon G.L., Baughman D.R., Gathje J.C., Oberg K.C. Pressure oxidation problems and solutions: treating carbonaceous gold ores containing trace amounts of chlorine(halogens). Min. Eng. 1998. Vol. 50. No. 1 . P. 69—73.
8. Ding Y., Zhang S., Liu B., Zheng H., Chang C. C., Ekberg C. Recovery of precious metals from electronic waste and spent catalysts: A review. Resources, Conserv., Recycl. 2019. Vol. 141. P. 284—298. https://doi.org/10.1016/j.resconrec.2018.10.041.
9. Islam A., Ahmed T., Awual M.R., Rahman A., Sultana M., Abd Aziz A., Hasan M. Advances in sustainable approaches to recover metals from e-waste-A review. J. Clean. Product. 2020. Vol. 244. Art. 118815. https://doi.org/10.1016/j.jclepro.2019.118815.
10. Salman K., Yen-Peng T. Recycling pathways for platinum group metals from spent automotive catalyst: A review on conventional approaches and bio-processes. Resources, Conserv., Recycl. 2021. Vol. 170. Art. 105558. https://doi.org/10.1016/j.resconrec.2021.105588.
11. Padamata S.K., Yasinskiy A.S., Polyakov P.V., Pavlov E.A., Varyukhin, D.Y. Recovery of noble metals from spent catalysts: A review. Metall. Mater. Trans. B. 2020. Vol. 51. No. 5. P. 2413—2435. https://doi.org/10.1007/s11663020-01913-w.
12. Oraby E.A., Li H., Eksteen J.J. An alkaline glycine-based leach process of base and precious metals from powdered waste printed circuit boards. Waste Biomass Valoriz. 2020. Vol. 11. No. 8. P. 3897—3909. https://doi.org/10.1007/s12649-019-00780-0.
13. Batnasan A., Haga K., Shibayama A. Recovery of precious and base metals from waste printed circuit boards using a sequential leaching procedure. JOM. 2018. Vol. 70. No. 2. P. 124—128. https://doi.org/10.1007/s11837-017-2694-y.
14. Miller J.D., Wan R.Y., Díaz X. Preg-robbing gold ores. In: Gold ore processing. Amsterdam, The Netherlands: Elsevier, 2016. Р. 885—907. https://doi.org/10.1016/B978-0444-63658-4.00049-9.
15. Liu G., Wu Y., Tang A., Li B. Recovery of scattered and precious metals from copper anode slime by hydrometallurgy: A review. Hydrometallurgy. 2020. Vol. 197. Art. 105460. https://doi.org/10.1016/j.hydromet.2020.105460.
16. Upadhyay A., Lee J.-C., Kim E., Kim M.S., Kim B.Su., Kumar V. Leaching of platinum group metals (PGMs) from spent automotive catalyst using electro-generated chlorine in HCl solution. J. Chem. Technol. Biotechnol. 2013. Vol. 88. P. 1991—1999. https://doi.org/10.1002/jctb.4057.
17. Lobko S.V., Kuzas E.A., Naboychenko S.S., Voinov V.N. Electrochlorination of secondary raw materials containing precious metals using a volumetric current supply. Tsvetnye Metally. 2017. No. 3. P. 45—49. https://doi.org/10.17580/tsm.2017.03.07.
18. Belousov O.V., Belousova N.V., Borisov R.V., Ryumin A.I. Extraction of trace elements from platinum group metal concentrates in hydrothermal conditions. Tsvetnye Metally. 2021. No. 6. P. 23—30. https://doi.org/10.17580/tsm.2021.06.03.
19. Belousov O.V., Ryumin A.I., Belousova N.V., Borisov R.V., Grizan N.V., Lobanova O.N. Leaching of impurities from poor intermediate products of refining production in autoclave conditions. Russ. J. Appl. Chem. 2020. Vol. 93. No 7. P. 1054—1058. https://doi.org/10.1134/S1070427220070162.
20. Xingxiang F., Yunan Y., Lin T., Yongjia L., Sen Y., Songyuan Z., Zhihong Y., Ni Y., Fabin Z. Kinetics research on rhenium of the waste platinum-rhenium catalyst under pressure oxygen leaching. IOP Conf. Ser.: Mater. Sci. Eng. 2018. Vol. 439. No. 2. Art. 022009. https://doi.org/10.1088/1757-899X/439/2/022009.
21. Hodgson A.P.J., Jarvis K.E., Grimes R.W., Marsden O.J. Development of an iridium dissolution method for the evaluation of potential radiological device materials. J. Radioanal. Nucl. Chem. 2016. Vol. 307. No. 3. P. 2181—2186. https://doi.org/10.1007/s10967-015-4381-1.
22. Mohanty U.S., Kalliomäki T., Seisko S., Peng C., Rintala L., Halli P., Aroma J., Taskinen P., Lundström M. Dissolution of copper and nickel from nickel-rich anode slimes under oxidized pressure leaching. Miner. Process. Extract. Metall. 2019. P. 1—10. https://doi.org/10.1080/25726641.2019.1670008.
23. Yang Y., Gao W., Xu B., Li Q., Jiang T. Study on oxygen pressure thiosulfate leaching of gold without the catalysis of copper and ammonia. Hydrometallurgy. 2019. Vol. 187. P. 71—80. https://doi.org/10.1016/j.hydromet.2019.05.006.
24. Ubaldini S. Leaching kinetics of valuable metals. Metals. 2021. Vol. 11. No. 1. P. 173. https://doi.org/10.3390/met11010173.
25. Belousova N.V., Belousov O.V., Borisov R.V., Grizan N.V. Specific features of dissolution of metallic rhodium in acid oxidative media under hydrothermal conditions. Russ. J. Appl. Chem. 2019. Vol. 92. No. 8. P. 1102—1106. https://doi.org/10.1134/S107042721908007X.
26. Borisov R.V., Belousov O.V., Dorokhova L.I., Zhizhaev A.M. Features of fine iridium powders dissolution in acidic media. J. Sib. Federal Univ. Chemistry. 2017. Vol. 3. No. 10. P. 325—332. https://doi.org/10.17516/1998-2836-0029.
27. Borisov R.V., Belousov O.V., Irtyugo L.A. Thermostimulated transformations of highly disperse powders of platinum group metals in an argon atmosphere. Russ. J. Phys. Chem. A. 2014. Vol. 88. No. 10. P. 1732—1738. https://doi.org/10.1134/S0036024414100069.
28. Levenspiel O. Chemical reaction engineering. 2nd ed. N.Y.: John Wiley & Sons, 1972.
29. Hidalgoa T., Kuharb L., Beinlicha A., Putnisa A. Kinetics and mineralogical analysis of copper dissolution from a bornite/chalcopyrite composite sample in ferric-chloride and methanesulfonic-acid solutions. Hydrometallurgy. 2019. Vol. 188. P. 140—156. https://doi.org/10.1016/j.hydromet.2019.06.009.
30. Li M., Wei Ch., Qiu Sh., Zhou X., Li C., Deng Zh. Kinetics of vanadium dissolution from black shale in pressure acid leaching. Hydrometallurgy. 2010. Vol. 104. P. 193—200. https://doi.org/10.1016/j.hydromet.2010.06.001.
31. Ju Zh.-J., Wang Ch.-Y., Yin F. Dissolution kinetics of vanadium from black shale by activated sulfuric acid leaching in atmosphere pressure. Int. J. Min. Process. 2015. Vol. 138. P. 1—5. https://doi.org/10.1016/j.minpro.2015.03.005.
Review
For citations:
Belousova N.V., Belousov O.V., Borisov R.V., Akimenko A.A. Autoclave dissolution of platinum metals in hydrochloric acid oxidizing media. Izvestiya. Non-Ferrous Metallurgy. 2021;27(5):50-57. (In Russ.) https://doi.org/10.17073/0021-3438-2021-5-50-57