Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Processing of finely dispersed technogenic raw materials for aluminum production in order to extract valuable components

https://doi.org/10.17073/0021-3438-2021-5-38-49

Abstract

The paper provides the results of experiments on the hydrometallurgical processing of finely dispersed technogenic raw materials for primary aluminum production in Soderberg cells (case study of the Irkutsk Aluminum Smelter) – aged sludge. The components of this sludge are dust from electrostatic precipitators (79.7 %), wet gas cleaning sludge (4.4 %) and coal froth flotation tailings (15.8 %). According to the grain-size analysis carried out, aged sludge sample particles have a size of –50 μm. According to the chemical composition analysis of the sludge sample, main components in it are carbon, cryolite, chiolite with a small amount of other compounds (corundum, ralstonite, spodumene, fluorite). Fluorine leaching experiments were carried out with a 2 % sodium hydroxide solution at a stirrer speed of ~1020 rpm. Using the mathematical planning of a three-factor experiment, it was found that the maximum concentration of fluorine in the solution (15.844 g/dm3) is achieved with the following optimal parameters of fluorine alkaline leaching: temperature of 90 °C, liquid-to-solid ratio of 9 : 1, and time of 90 min. The multidimensional polynomial equation was obtained for fluorine alkaline leaching from aged sludge. Cryolite was obtained from fluorine-containing solutions (by the reaction of sodium fluoride interaction with sodium bicarbonate and an aluminate solution), which was confirmed by X-ray phase analysis data.

About the Authors

N. V. Nemchinova
Irkutsk National Research Technical University
Russian Federation

Dr. Sci. (Eng.), prof., head of the Department of non-ferrous metals metallurgy

664074, Russia, Irkutsk, Lermontova str., 83



A. E. Barauskas
Irkutsk National Research Technical University
Russian Federation

Postgraduate student of the Department of non-ferrous metals metallurgy

664074, Russia, Irkutsk, Lermontova str., 83



A. A. Tyutrin
Irkutsk National Research Technical University
Russian Federation

Cand. Sci. (Eng.), associate prof. of the Department of non-ferrous metals metallurgy

664074, Russia, Irkutsk, Lermontova str., 83



V. S. Vologin
Irkutsk National Research Technical University
Russian Federation

Student, Department of non-ferrous metals metallurgy

664074, Russia, Irkutsk, Lermontova str., 83



References

1. Grjotheim K., Kvande H. Introduction to aluminium electrolysis. Düsseldorf: Aluminium-Verlag, 1993.

2. Stojanovic B., Bukvic M., Epler I. Application of aluminum and aluminum alloys in engineering. Appl. Eng. Lett. 2018. Vol. 3. No. 2. P. 52—62. https://doi.org/10.18485/aeletters.2018.3.2.2.

3. Varshney D., Kumar K. Application and use of different aluminium alloys with respect to workability, strength and welding parameter optimization. Ain Shams Eng. J. 2021. Vol. 12. Iss. 1. P. 1143—1152. https://doi.org/10.1016/j.asej.2020.05.013.

4. Summers P.T., Chen Y., Rippe C.M., Allen B., Mouritz A.P., Case S.W., Lattimer B.Y. Overview of aluminum alloy mechanical properties during and after fires. Fire Sci. Rev. 2015. Vol. 4. No. 3. https://doi.org/10.1186/s40038-0150007-5.

5. Dudin M.N., Voykova N.A., Frolova E.E., Artemieva J.A., Rusakova E.P., Abashidze A.H. Modern trends and challenges of development of global aluminum industry. Metalurgija. 2017. Vol. 56. No. 1—2. P. 255—258.

6. Tarcy G.P., Torklep K. Current efficiency in prebake and Sоderberg cells. Essent. Read. Light Metals. 2013. Vol. 2. P. 211—216. https://doi.org/10.1002/9781118647851.ch30.

7. Mann V., Buzunov V., Pitertsev N., Chesnyak V., Polyakov P. Reduction in power consumption at UC Rusal’s Smelters 2012—2014. Light Metals. 2015. Р. 757—762. https://doi.org/10.1002/9781119093435.ch128.

8. Bazhin V.Yu., Smol’nikov A.D., Petrov P.A. Concept of energy efficiency aluminum production «Electrolysis 600+». Mezhdunarodnyi nauchno-issledovatel’skii zhurnal (International Research Journal). 2016. Vol. 5. Iss. 3. P. 37—40. (In Russ.) https://doi.org/10.18454/IRJ.2016.47.113.

9. Grigoriev V.G., Tepikin S.V., Kuzakov A.A., Pyankin A.P., Timkina E.V., Pinaev A.A. Automatic feed of raw materials in aluminum production. Vestnik Gorno-metallurgicheskoi sektsii Rossiiskoi akademii estestvennykh nauk. Otdelenie metallurgii. 2017. No. 39. P. 97—104 (In Russ.).

10. Shepelev I.I., Golovnykh N.V., Sakhachev A.Yu., Zhizhaev A.M., Kotlyagin A.G. Improving limestone-nepheline charge sinter quality by gypsum anhydrate technogenic raw material introduction. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta (Proceedings of Irkutsk State Technical University). 2018. Vol. 22. No. 5. P. 225—239 (In Russ.). https://doi.org/10.21285/18143520-2018-5-225-239.

11. Bazhin V.Yu., Brichkin V.N., Sizyakov V.M., Cherkasova M.V. Pyrometallurgical treatment of a nepheline charge using additives of natural and technogenic origin. Metallurgist. 2017. Vol. 61. Iss. 1. P. 147—154. https://doi.org/10.1007/s11015-017-0468-y.

12. Pawlek R.P. Spent potlining: An update. Light Metals. 2012. P. 1313—1317. https://doi.org/10.1007/978-3-31948179-1_227.

13. Vinogradov A.M., Pinaev А.А., Vinogradov D.А., Puzin А.V., Shadrin V.G., Zorko N.V., Somov V.V. Increasing hooding efficiency of Soderberg cells. Izvestiya Vuzov. Tsvetnaya Metallurgiya (Izvestiya. Non-Ferrous Metallurgy). 2017. No. 1. P. 19—30 (In Russ.). https://doi.org/10.17073/00213438-2017-1-19-30.

14. Baranov A.N., Timkina E.V., Tyutrin A.A. Research on leading fluorine from carbon-containing materials of aluminum production. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta (Proceedings of Irkutsk State Technical University). 2017. Vol. 21. No. 7. P. 143— 151 (In Russ.). https://doi.org/10.21285/1814-3520-2017-7143-151.

15. Burdonov A.E., Zelinskaya E.V., Gavrilenko L.V., Gavrilenko A.A. Investigation of substantial composition of alumina-bearing material of aluminium electrolysers for usage in primary aluminium technology. Tsvetnye Metally. 2018. No. 3. P. 32—38 (In Russ.). https://doi.org/10.17580/tsm.2018.03.05.

16. Tian X., Zhu A., Wei J., Han R. Preparation and forming technology of particle reinforced aluminum matrix composites. Mater. Sci.: Adv. Compos. Mater. 2017. Vol. 1. No. 1. P. 1—9.

17. Stojanović B., Ivanović L. Application of aluminium hybrid composites in automotive industry. Tehničkivjesnik. 2015. Vol. 22. No. 1. P. 247—251. https://doi.org/10.17559/TV-20130905094303.

18. Su Hai, Gao Wenli, Feng Zhaohui, Lu Zheng. Processing, microstructure and tensile properties of nano-sized Al2O3 particle reinforced aluminium matrix composites. Mater. Design. 2012. Vol. 36. P. 590—596. https://doi.org/10.1016/j.matdes.2011.11.064.

19. Belov N.A. Phase composition of industrial and promising aluminum alloys. Moscow: MISIS, 2010 (In Russ.).

20. Kulikov B.P., Istomin S.P. Processing of aluminum waste products. Krasnoyarsk: Klassik Tsentr, 2004 (In Russ.).

21. Nemchinova N.V., Tyutrin A.A., Barauskas A.E. Analysing the chemical composition of man-made materials resultant from the production of primary aluminium in order to find cost-effective recycling techniques. Tsvetnye Metally. 2019. No. 12. P. 22—29 (In Russ.). https://doi.org/10.17580/tsm.2019.12.03.

22. Mann V., Pingin V., Zherdev A., Bogdanov Y., Pavlov S., Somov V. SPL Recycling and Re-processing. Light Metals. 2017. P. 571—578. https://doi.org/10.1007/978-3-31951541-0_71.

23. Patrin R.K., Bazhin V.Yu. Spent linings from aluminum cells as a raw material for the metallurgical, chemical, and construction industries. Metallurgist. 2014. Vol. 58. Iss. 7—8. Р. 625—629. https://doi.org/10.1007/s11015014-9967-2.

24. Kruger P.V. Use of Spent Pot Lining (SPL) in Ferro silico manganese Smelting. Light Metals. 2011. Р. 275—280. https://doi.org/10.1002/9781118061992.ch49.

25. Petrovskiy A.A., Nemchinova N.V., Tyutrin A.A., Korepina N.A. Use of leaching cake from refractory lining of dismantled electrolysers in cement production. In: Proc. of the Intern. Symp. «Engineering and earth sciences: Applied and fundamental research» dedicated to the 85th anniversary of H.I. Ibragimov (ISEES 2019). 2019. Vol. 1. Р. 465— 470. https://doi.org/10.2991/isees-19.2019.91.

26. Flores I.V., Fraiz F., Lopes Junior R. A., Bagatini M.C. Evaluation of Spent Pot Lining (SPL) as an alternative carbonaceous material in ironmaking processes. J. Mater. Res. Technol. 2019. Vol. 8. Iss. 1. P. 33—40. https://doi.org/10.1016/j.jmrt.2017.11.004.

27. Nemchinova N.V., Tyutrin А.А., Korepina N.A., Belskii S.S. On the possibility of carbonaceous dust waste use of prebaked anode production in silicon metallurgy. In: IOP Conf. Ser.: Materials Science and Engineering. 2018. Vol. 411. Р. 012052. https://doi.org/10.1088/1757899X/411/1/012052.

28. Zenkin E.Yu., Gavrilenko A.A., Nemchinova N.V. About recycling of primary aluminum production of JSC RUSAL BRATSK. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta (Proceedings of Irkutsk State Technical University). 2017. Vol. 21. No. 3. P. 123—132 (In Russ.). https://doi.org/10.21285/1814-3520-2017-3-123132.

29. Timkina E.V., Baranov A.N., Petrovskaya V.N., Ershov V.A. Thermodynamics of fluorine leaching from aluminum production waste. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta (Proceedings of Irkutsk State Technical University). 2016. Vol. 20. No. 12. P. 182—192 (In Russ.). https://doi.org/10.21285/1814-3520-2016-12182-192.

30. Gulyaev A.V., Gavrilenko L.V., Baranov A.N., Nozhko S.I. Recovery of solid carbonaceous wastes at an aluminium plant equipped with electrolyte tanks with selfbaking anode with an upper current lead. Ekologiya i promyshlennost’ Rossii (Ecology and Industry of Russia). 2017. Vol. 21. No. 5. Р. 8—10 (In Russ.). https://doi.org/10.18412/1816-0395-2017-5-8-10.

31. Nemchinova N.V., Yakushevich P.А., Yakovleva A.А., Gavrilenko L.V. Experiment for use of Bratsk aluminium plant technogenic waste as a reducing agent during cast iron smelting. Metallurgist. 2018. Vol. 62. Iss. 1—2. P. 150—155. https://doi.org/10.1007/s11015-018-0637-7.

32. Nemchinova N.V., Mineev G.G., Tyutrin A.A., Yakovleva A.A. Utilization of dust from silicon production. Steel Transl. 2017. Vol. 47. Iss. 12. P. 763—767. https://doi.org/10.3103/S0967091217120087.

33. Nemchinova N.V., Leonova M.S., Tyutrin A.A. Experimental works on pelletized charge smelting in silicon production. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta (Proceedings of Irkutsk State Technical University). 2017. Vol. 21. No. 1. P. 209—217 (In Russ.) https://doi.org/10.21285/1814-3520-2017-1-209-217.

34. Petlin I. V., Malyutin L.N. Hydrogen fluoride producing technology from aluminum industry fluorine-containing waste products. Izvestiya Vuzov. Prikladnaya Khimiya i Biotekhnologiya (Proceedings of Universities. Applied Chemistry and Biotechnology). 2014. Vol. 7. No. 2. Р. 24— 31 (In Russ.).

35. Barauskas A.E., Nemchinova N.V. Hydrometallurgical processing of technogenic finely dispersed fluorocarbon-containing raw materials of primary aluminum production. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta (Proceedings of Irkutsk State Technical University). 2020. Vol. 24. No. 6. P. 1311—1323 (In Russ.). https://doi.org/10.21285/1814-3520-20206-1311-1323.

36. Nemchinova N.V., Tyutrin A.A., Somov V.V. Determination of optimal fluorine leaching parameters from the coal part of the waste lining of dismantled electrolytic cells for aluminum production. Zapiski Gornogo Instituta (J. Mining Inst.). 2019. Vol. 239. P. 544—549 (In Russ.). https://doi.org/10.31897/PMI.2019.5.544.

37. Komarova N.V., Kamentsev Ya.S. A practical guide to the use of the «Kapel» capillary electrophoresis systems. St. Petersburg: Veda, 2006 (In Russ.).

38. Borovikov V.V. A popular introduction to modern data analysis in the STATISTICA system. Мoscow: Goryachaya liniya-Telekom, 2013 (In Russ.).

39. Vetoshkin A.G. Processes and devices for gas cleaning. Penza: PSU, 2006 (In Russ.).


Review

For citations:


Nemchinova N.V., Barauskas A.E., Tyutrin A.A., Vologin V.S. Processing of finely dispersed technogenic raw materials for aluminum production in order to extract valuable components. Izvestiya. Non-Ferrous Metallurgy. 2021;27(5):38-49. (In Russ.) https://doi.org/10.17073/0021-3438-2021-5-38-49

Views: 477


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)