Physical and chemical regularities of zinc sulfide concentrate pressure leaching in the presence of lignosulfonate
https://doi.org/10.17073/0021-3438-2021-5-13-24
Abstract
The study covers physical and chemical regularities of zinc sulfide concentrate oxygen pressure leaching in sulfuric acid. The effect of lignosulfonate concentration (CLSN = 0.2÷0.8 g/dm3), leaching time (τ = 20÷120 min), temperature (T = 393÷423 K), and oxygen partial pressure (РО2= 0.3÷0.7 MPa) on the degree of zinc and iron extraction into the solution and on the cake grain-size distribution was established. It was shown that lignosulfonate additive intensifies zinc and iron extraction into the solution. Maximum extraction of zinc and iron was 89 and 37 %, respectively, for 120 min of leaching at CLSN = 0.6÷0.8 g/dm3. The differential rate law with respect to lignosulfonate was 0.3 for sphalerite, and 0.9 for iron sulfides. A controversial influence of rising temperature on the process under investigation was found. Temperature elevation from 413 to 423 K leads to a decrease in zinc extraction by 3–4 % due to the formation of sulfur-sulfide aggregates over 150 μm in size. The calculated values of apparent activation energy (Еа) of sphalerite and iron sulfide leaching in the presence of lignosulfonate were 30 and 45 kJ/mole, respectively. It was found out that an increase in oxygen partial pressure from 0.3 to 0.5 MPa has a positive influence on leaching and increases extraction of zinc and iron by 22 and 27 %, respectively. However, an increase in oxygen partial pressure up to 0.7 MPa in the presence of lignosulfonate after 40 min of leaching led to a decrease in leaching rate, possibly as a result of lignosulfonate destruction. It was found that differential rate laws with respect to oxygen are 1.2 for sphalerite and 2.5 for iron sulfides.
Keywords
About the Authors
E. B. KolmachikhinaRussian Federation
Cand. Sci. (Eng.), senior engineer of the Department of non-ferrous metallurgy
620002, Russia, Ekaterinburg, Mira str., 19
T. N. Lugovitskaya
Russian Federation
Cand. Sci. (Eng.), assistant prof. of the Department of non-ferrous metallurgy
620002, Russia, Ekaterinburg, Mira str., 19
M. A. Tret’yak
Russian Federation
Postgraduate student of the Department of non-ferrous metallurgy
620002, Russia, Ekaterinburg, Mira str., 19
K. D. Naumov
Russian Federation
Cand. Sci. (Eng.), engineer of the Department of non-ferrous metallurgy
620002, Russia, Ekaterinburg, Mira str., 19
References
1. Wood J., Wilson D., Hughes S. A new era in smelting sustainability — intensification of the Outotec® Ausmelt top submerged lance (TSL) process for zinc production. Miner., Met., Mater. Ser. 2020. P. 63—73. DOI: 10.1007/978-3-030-37070-1_6.
2. Sadykov S.B. Autoclave treatment of low-grade zinc concentrates. Ekaterinburg: UrO RAN, 2006 (In Russ.).
3. Naboichenko S.S., Bolatbaev K.N. Regularities of hydrochemical oxidation of sulfide minerals in sulfuric acid environments (> 380K). Kompleksnoe ispol’zovanie mineral’nogo syr’ya. 2005. No. 1. P. 46—52 (In Russ.).
4. Jan R.J., Hepworth M.T., Fox V.G. A kinetic study on the pressure leaching of sphalerite. Metall. Trans. B. 1976. No. 7. P. 353—361. DOI: 10.1007/BF02652705.
5. Halfyard J.E., Hawboldt K. Separation of elemental sulfur from hydrometallurgical residue: A review. Hydrometallurgy. 2011. Vol. 109. No. 1—2. P. 80—89. DOI: 10.1016/j.hydromet.2011.05.012.
6. Owusu G., Peters E., Dreisinger D.B. Surface tensions and contact angles due to lignin sulphonates in the system: Liquid sulphur, aqueous zinc sulphate and zinc sulphide. Canad. J. Chem. Eng. 1992. Vol. 70. No. 1. P. 173—180. DOI: 10.1002/cjce.5450700125.
7. Owusu G., Dreisinger D. B., Peters E. Effect of surfactants on zinc and iron dissolution rates during oxidative leaching of sphalerite. Hydrometallurgy. 1995. Vol. 38. No. 3. P. 315—324. DOI: 10.1016/0304-386X(94)00061-7.
8. Suárez-Gómez S.L., Sánchez M.L., Blanco F., Ayala J., de Cos Juez F.J. Successful sulfur recovery in low sulfurate compounds obtained fromthe zinc industry: Evaporation-condensation method. J. Hazard. Mater. 2017. Vol. 336. P. 168—173. DOI: 10.1016/j.jhazmat.2017.04.051.
9. Jorjani E., Ghahreman A. Challenges with elemental sulfur removal during the leaching of copper and zinc sulfides, and from the residues: A review. Hydrometallurgy. 2017. Vol. 171. P. 333—343. DOI: 10.1016/j.hydromet.2017.06.011.
10. Rutledge J., Anderson C.G. Tannins in mineral processing and extractive metallurgy. Metals. 2015. No. 5. P. 1520— 1542. DOI: 10.3390/met5031520.
11. Dreisinger D., Zheng Z., Hannigan N.J. The use of OrthoPhenylene-Diamine (OPD) as a surfactant in the pressure oxidation of pyritic gold ores and concentrates. Proc. TMS Fall Extract. Process. Conf. 2003. Vol. 1. P. 603—615.
12. Shneerson Ya.M., Onatskaya A.A., Krasnov A.L. Application of surfactants in autoclave leaching of pyrrhotite concentrates. Tsvetnye Metally. 1982. No. 9. P. 26—30 (In Russ.).
13. Tong L., Dreisinger D. The adsorption of sulfur dispersing agents on sulfur and nickel sulfide concentrate surfaces. Miner. Eng. 2009. Vol. 22. No. 5. P. 445—450.
14. Owusu G., Dreisinger D.B., Peters E. Interfacial effects of surface-active agents under zinc pressure leach conditions. Metall. Mater. Trans. B. 1995. Vol. 26. P. 5—12. DOI: 10.1007/BF02648972.
15. Naboichenko S.S., Ni L.P., Sheerson Ya.M., Chugaev L.V. Autoclave hydrometallurgy of non-ferrous metals. Ekaterinburg: UGTU—UPI, 2002 (In Russ.).
16. Shpaer V.M., Kalashnikova M.I. Influence of sulphuric acid on autoclave leaching of low-grade zinc concentrates. Tsvetnye Metally. 2010. No. 8. P. 23—27 (In Russ.).
17. Sofekun G.O., Evoy E., Lesage K.L., Chou N., Marriott R.A. The rheology of liquid elemental sulfur across the λ-transition. J. Rheol. 2018. No. 62. P. 469—476. DOI: 10.1122/1.5001523.
18. Steudel R. Liquid sulfur. In: Elemental sulfur and sulfur-rich compounds I (Top. Current Chem. Vol. 230). Chapter 2. Berlin: Springer, 2003. P. 81—116. DOI: 10.1007/b12111.
19. Timrot D.L., Traktueva S.A., Alekseev B.A. Surface-tension of liquid sulfur. High Temperature. 1983. Vol. 21. No. 5. P. 671—676.
20. Crundwell F.K. Analysis of the activation energy of dissolution of the iron-containing zinc sulfide (sphalerite). J. Phys. Chem. C. 2020. No. 124. P. 15347—15354. DOI: 10.1016/j.mineng.2020.106702.
21. Zhukov V.V., Laari A., Lampinen M., Koiranen T. A mechanistic kinetic model for direct pressure leaching of iron containing sphalerite concentrate. Chem. Eng. Res. Design. 2017. Vol. 118. P. 131—141. DOI: 10.1016/j.cherd.2016.12.004.
22. Xie K., Yang X., Wang J., Yan J., Shen Q. Kinetic study on pressure leaching of high iron sphalerite concentrate. Trans. Nonferr. Met. Soc. China. 2007. Vol. 17. No. 1. P. 187—194. DOI: 10.1016/S1003-6326(07)60070-3.
23. Bailey L.K., Peters E. Decomposition of pyrite in acids by pressure leaching and anodization: the case for an electrochemical mechanism. Canad. Metall. Quart. 1976. Vol. 15. No. 4. P. 333—344. DOI: 10.1179/000844376795050462.
24. Long H., Dixon D.G. Pressure oxidation of pyrite in sulfuric acid media: A kinetic study. Hydrometallurgy. 2004. Vol. 73. No. 3—4. P. 335—349. DOI: 10.1016/j.hydromet.2003.07.010.
25. Lowson R.T. Aqueous oxidation of pyrite by molecular oxygen. Chem. Rev. 1982. Vol. 82. No. 5. P. 461—497. DOI: 10.1021/cr00051a001.
Review
For citations:
Kolmachikhina E.B., Lugovitskaya T.N., Tret’yak M.A., Naumov K.D. Physical and chemical regularities of zinc sulfide concentrate pressure leaching in the presence of lignosulfonate. Izvestiya. Non-Ferrous Metallurgy. 2021;27(5):13-24. (In Russ.) https://doi.org/10.17073/0021-3438-2021-5-13-24