Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Comprehensive assessment of flotation reagents by their influence on metal losses and flotation selectivity

https://doi.org/10.17073/0021-3438-2021-5-4-12

Abstract

The paper proposes a method for quick estimation of the average floatability of minerals according to the kinetic experiment, without finding the flotation spectrum where first moments of distribution are calculated by the coefficients of the polynomial approximation of the kinetic curve in the logarithmic form. An example of copper-nickel ore demonstrated that this method is effective in the multiparameter problem of comparative assessment of reagents. The ten parameters assessed included the average floatability of target minerals (chalcopyrite and pentlandite), pyrrhotite and rock; flotation selectivity coefficients of target minerals relative to pyrrhotite and rock; levels of copper and nickel losses with bulk flotation tailings. Interdependencies of parameters were visualized using diagrams showing the effect of flotation reagents on the groups of parameters: average floatability, selectivity coefficients, metal losses and selectivity relative to rock. The influence of butyl xanthate, aerofloat, diesel fuel, as well as gangue depressants – carboxymethyl cellulose (CMC) and acidified water glass (with a total consumption of collectors, diesel fuel, acidified water glass and CMC of 130 g/t, 5–10 g/t, 200 g/t, and 500 g/t, respectively) on the estimated parameters under collective flotation conditions was determined. It was found that the addition of aerofloat and diesel fuel to the main reagent collector – xanthate – increases the flotation selectivity of pentlandite and chalcopyrite relative to pyrrhotite and rock-forming component. The introduction of acidified water glass into the reagent scheme increases the flotation selectivity of nickel and copper sulfides relative to the rock. CMC additives impair the selectivity of copper flotation. The quantitative effects of each individual parameter were taken into account in the integral rating assessment of the prospects of using reagent combinations for copper-nickel ore by a set of ten parameters. The method proposed can be further used for the mass comparative evaluation of flotation reagents.

About the Authors

V. I. Bragin
Siberian Federal University; Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of Sciences of Federal Research Center «Krasnoyarsk Science Center» of the SB RAS
Russian Federation

Dr. Sci. (Eng.), prof., head of the Department of mineral processing of the School of Non-Ferrous Metals and Material Science; leading researcher of the Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of Sciences (ICCT SB RAS)

660025, Russia, Krasnoyarsk, pr. Krasnoyarskii rabochii, 95

660036, Russia, Krasnoyarsk, Akademgorodok, 50/24



E. A. Burdakova
Siberian Federal University; Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of Sciences of Federal Research Center «Krasnoyarsk Science Center» of the SB RAS
Russian Federation

Cand. Sci. (Eng.), associate prof. of the Department of mineral processing, SNFMMS; researcher of the ICCT SB RAS

660025, Russia, Krasnoyarsk, pr. Krasnoyarskii rabochii, 95

660036, Russia, Krasnoyarsk, Akademgorodok, 50/24



N. F. Usmanova
Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of Sciences of Federal Research Center «Krasnoyarsk Science Center» of the SB RAS; Siberian Federal University
Russian Federation

Cand. Sci. (Eng.), researcher of the ICCT SB RAS; associate prof. of the Department of mineral processing, SNFMMS

660036, Russia, Krasnoyarsk, Akademgorodok, 50/24

660025, Russia, Krasnoyarsk, pr. Krasnoyarskii rabochii, 95



A. I. Kinyakin
Siberian Federal University
Russian Federation

postgraduate student of the Department of mineral processing, SNFMMS

660025, Russia, Krasnoyarsk, pr. Krasnoyarskii rabochii, 95



References

1. Ai G., Yang X., Li X. Flotation characteristics and flotation kinetics of fine wolframite. Powder Technol. 2017. Vol. 305. P. 377—381. http://dx.doi.org/10.1016/j.powtec.2016.09.068.

2. Yalcin E., Kelebek S. Flotation kinetics of a pyritic gold ore. Int. J. Miner. Process. 2011. Vol. 98. P. 48—54. DOI: 10.1016/j.minpro.2010.10.005.

3. Zhang J., Subasinghe N. Development of a flotation model incorporating liberation characteristics. Miner. Eng. 2016. Vol. 98. P. 1—8. http://dx.doi.org/10.1016/j.mineng.2016.05.021.

4. Rahman R.M., Ata S., Jameson G.J. The effect of flotation variables on the recovery of different particle size fractions in the froth and the pulp. Int. J. Miner. Process. 2012. Vol. 106—109. P. 70—77. DOI:10.1016/j.minpro.2012.03.001.

5. Vinnett L., Marion C., Grammatikopoulos T., Waters K.E. Analysis of flotation rate distributions to asses erratic performances from size-by-size kinetic tests. Miner. Eng. 2020. Vol. 149. Art. 106229. https://doi.org/10.1016/j.mineng.2020.106229.

6. Szczerkowska S., Wiertel-Pochopien A., Zawala J., Larsen E., Kowalczuk P.B. Kinetics of froth flotation of naturally hydrophobic solids with different shapes. Miner. Eng. 2018. Vol. 121. P. 90—99. https://doi.org/10.1016/j.mineng.2018.03.006.

7. Ma G., Xia W., Xie G. Effect of particle shape on the flotation kinetics of fine coking coal. J. Cleaner Product. 2018. Vol. 195. P. 470—475. https://doi.org/10.1016/j.jclepro.2018.05.230.

8. Eskanlou A., Huang Q., Chegeni M. H., Khalesi M. R., Abdollahy M. Determination of the mass transfer rate constant in a laboratory column flotation using the bubble active surface coefficient. Miner. Eng. 2020. Vol. 156. Art. 106521. https://doi.org/10.1016/j.mineng.2020.106521.

9. Kowalczuk P.B., Zawala J. A relationship between time of three-phase contact formation and flotation kinetics of naturally hydrophobic solids. Colloids Surf., A. 2016. Vol. 506. P. 371—377. http://dx.doi.org/10.1016/j.colsurfa.2016.07.005.

10. Nikolaev A.A., So Tu, Goryachev B.E. Investigation of the regularities of the kinetics of flotation of non-activated sphalerite with compositions of sulfhydryl collectors by the flotation method. GIAB. 2015. No. 9. Р. 86—95 (In Russ.).

11. Zhu H., Li Y., Lartey C., Li W., Qian G. Flotation kinetics of molybdenite in common sulfate salt solution. Miner. Eng. 2020. Vol. 148. Art. 106182. https://doi.org/10.1016/j.mineng.2020.106182.

12. Wang Z., Si J., Song Z., Zhang P., Wang J., Hao Y., Li W., Zhang P., Miao S. Precise and instrumental measurement of thermodynamics and kinetics of froth flotation by langmuir-blodgett technique. Colloids Surf., A. 2020. Vol. 605. Art. 125337. https://doi.org/10.1016/j.colsurfa.2020.125337.

13. Imaizumi T., Inoue T. Kinetic considerations of froth flotation. In: Proc. 6th Int. Mineral Processing Congress (Cannes). 1963. P. 581—593.

14. Tikhonov O.N. Regularities of the effective separation of minerals in the processes of mineral processing. Mosсow: Nedra, 1984 (In Russ.).

15. Rubinshtein Yu.B., Filippov Yu.A. Flotation kinetics. Mosсow: Nedra, 1980 (In Russ.).

16. Sibanda V., Khan R., Danha G. The effect of chemical reagents on flotation performance of a pentlandite ore: An attainable region approach. Powder Technol. 2019. Vol. 352. P. 462—469. https://doi.org/10.1016/j.powtec.2019.04.062.

17. Feng B., Zhang W., Guo Y., Peng J., Ning X., Wang H. Synergistic effect of acidified water glass and locust bean gum in the flotation of a refractory copper sulfide ore. J. Cleaner Product. 2018. Vol. 202. P. 1077—1084. https://doi.org/10.1016/j.jclepro.2018.08.214.

18. Kapur P.C., Mehrotra S.P. Estimation of the flotation rate distributions by numerical inversion of the Laplace transform. Chem. Eng. Sci. 1974. Vol. 29. P. 411—415.

19. Ryabov B.M. Numerical inversion of the Laplace transform. St. Petersburg: St. Petersburg University Press, 2013 (In Russ.).

20. Tikhonov A.N., Arsenin V.Ya. Methods for solving ill-posed problems. 3rd ed. Moscow: Nauka, 1986 (In Russ.).

21. Konovalov S.A., Tikhonov O.N. Flotometric analysis using the variational principle in the regularization method. Tsvetnaya metallurgiya. 1982. No. 1. P. 100—105 (In Russ.).

22. Pascual R.L., Whiten W.J. The determination of floatability distribution from laboratory batch cell tests. Miner. Eng. 2015. Vol. 83. P. 1—12. https://doi.org/10.1016/j.mineng.2015.08.007.

23. Harris C.C., Chakravarti A. Semi-batch froth flotation kinetics: species distribution analysis. Trans.-Soc. Min. Eng., AIME. 1970. Vol. 247. P. 162—172.

24. Bu Xiangning, Xie Guangyuan, Peng Yaoli, Ge Linhan, Ni Chao. Kinetics of flotation. Order of process, rate constant distribution and ultimate recovery. Physicochem. Probl. Miner. Process. 2016. Vol. 53. P. 342—365.

25. Korolyuk V.S., Portenko N.I., Skorokhod A.V., Turbin A.F. Handbook of probability and mathematical statistics. Mosсow: Nauka, 1985 (In Russ.).


Review

For citations:


Bragin V.I., Burdakova E.A., Usmanova N.F., Kinyakin A.I. Comprehensive assessment of flotation reagents by their influence on metal losses and flotation selectivity. Izvestiya. Non-Ferrous Metallurgy. 2021;27(5):4-12. (In Russ.) https://doi.org/10.17073/0021-3438-2021-5-4-12

Views: 646


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)