Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Structure and properties of TiN–Pb composite coatings deposited on VT6 alloy by DC magnetron sputtering

https://doi.org/10.17073/0021-3438-2021-4-70-77

Abstract

DC reactive magnetron sputtering of two separate single-element Ti and Pb targets was used to deposit a TiN–Pb composite coating onto a substrate made of the VT6 titanium alloy. The studies were carried out at Pb cathode currents of 0.2 and 0.1 A and two fixed argon flow rate values of 6.0 or 8.5 cm3/min, and the flow rate of nitrogen supplied to the chamber varying from experiment to experiment. The composition of coatings was determined by energy dispersive analysis. It was shown that the amount of lead in the coatings ranged from 0.5 to 16 wt.% depending on the Pb cathode current and reactive nitrogen consumption. Coating microhardness and wear were determined for each deposition mode. It was found that coating thicknesses varied from 1.9 to 5.2 μm depending on the ratio of argon and nitrogen fluxes. The effect of TiN–Pb magnetron coating deposition parameters on the structure and phase composition was investigated by X-ray diffraction method. It was shown that the coating consists of Pb and PbO at the Pb cathode current of 0.2 A, and of TiN, Pb, and PbO at the current of 0.1 A, while an increase in the ratio of argon and nitrogen fluxes leads to an increase in the fraction of TiN, the intensity of titanium substrate surface saturation with nitrogen, as well as microhardness and wear resistance. Under all deposition conditions the TiN coating features by a typical texture (111), the intensity of which varies nonmonotonically.

About the Authors

A. A. Lozovan
Moscow Aviation Institute (National Research University)
Russian Federation

Dr. Sci. (Eng.), Prof., Department of technologies and systems for computer-aided design of metallurgical processes (TSCADMP)

125993, Russia, Moscow, Volokolamskoe shosse, 4



S. Ya. Betsofen
Moscow Aviation Institute (National Research University)
Russian Federation

Dr. Sci. (Eng.), Prof., Department of materials science and materials processing technology (MSMPT)

125993, Russia, Moscow, Volokolamskoe shosse, 4



M. A. Lyakhovetskiy
Moscow Aviation Institute (National Research University)
Russian Federation

Cand. Sci. (Eng.), Assistant prof., Senior scientist research, Department of technology of production of aircraft engines (TPAE)

125993, Russia, Moscow, Volokolamskoe shosse, 4



Yu. S. Pavlov
Moscow Aviation Institute (National Research University)
Russian Federation

Engineer, Department of TSCADMP

125993, Russia, Moscow, Volokolamskoe shosse, 4



I. A. Grushin
Moscow Aviation Institute (National Research University)
Russian Federation

Cand. Sci. (Eng.), Senior engineer, Department of MSMPT

125993, Russia, Moscow, Volokolamskoe shosse, 4



E. P. Kubatina
Moscow Aviation Institute (National Research University)
Russian Federation

Head of the Laboratory, Department of TSCADMP

125993, Russia, Moscow, Volokolamskoe shosse, 4



I. A. Nikolaev
Moscow Aviation Institute (National Research University)
Russian Federation

Engineer, Department of TPAE

125993, Russia, Moscow, Volokolamskoe shosse, 4



References

1. Ananth M. Prem, Ramesh R. Sliding wear characteristics of solid lubricant coating on titanium alloy surface modified by laser texturing and ternary hard coatings. Trans. Nonferr. Met. Soc. China. 2017. Vol. 27. Iss. 4. P. 839—847.

2. Ceschini L., Lanzoni E., Martini C., Prandstraller D., Sambogna G. Comparison of dry sliding friction and wear of Ti6Al4V alloy treated by plasma electrolytic oxidation and PVD coating. Wear. 2008. Vol. 264. Iss. 1-2. P. 86—95.

3. Du D., Liu D., Zhang X., Tang J. Fretting fatigue behaviors and surface integrity of Ag—TiN soft solid lubricating films on titanium alloy. Appl. Surf. Sci. 2019. Vol. 488. P. 269—276.

4. Basseville S., Cailletaud G. An evaluation of the competition between wear and crack initiation in fretting conditions for Ti—6Al—4V alloy. Wear. 2015. Vol. 328-329. P. 443—455.

5. Amanov A., Cho I., Kim D., Pyun Y. Fretting wear and friction reduction of CP titanium and Ti—6Al—4V alloy by ultrasonic nanocrystalline surface modification. Surf. Coat. Technol. 2012. Vol. 8. P. 135—142.

6. Zhou Z.-Y., Liu X.-B., Zhuang S.-G., Yang X.-H., Wang M., Sun C.-F. Preparation and high temperature tribological properties of laser in-situ synthesized self-lubricating composite coatings containing metal sulfides on Ti6Al4V alloy. Appl. Surf. Sci. 2019. Vol. 481. P. 209—218.

7. Kowalski S., Cygnar M. The application of TiSiN/TiAlN coatings in the mitigation of fretting wear in push fit joints. Wear. 2019. Vol. 426—427. Pt. A. P. 725—734.

8. Muratore C., Voevodin A.A. Chameleon coatings: Adaptive surfaces to reduce friction and wear in extreme environments. Ann. Rev. Mater. Res. 2009. Vol. 39. P. 297—324.

9. Lia Z.G., Miyake S., Kumagai M., Saito H., Muramatsu Y. Hard nanocomposite Ti—Cu—N films prepared by d.c. reactive magnetron co-sputtering. Surf. Coat. Technol. 2004. Vol. 183. P. 62—68.

10. Wei C.B., Tian X.B., Yang Y., Yang S.Q., Fu R.K.Y., Chu P.K. Microstructure and tribological properties of Cu—Zn/TiN multilayers fabricated by dual magnetron sputtering. Surf. Coat. Technol. 2007. Vol. 202. No. 1. P. 189—193.

11. Ren S., Li H., Cui M., Wang L., Pu J. Functional regulation of Pb—Ti/MoS2 composite coatings for environmentally adaptive solid lubrication. Appl. Surf. Sci. 2017. Vol. 401. P. 362—372.

12. Qasim A.M., Ali F., Wu H., Fu R.K.Y., Xiao S., Li Y., Wu Z., Chu P.K. Effects of ion flux density and energy on the composition of TiNx thin films prepared by magnetron sputtering with an anode layer ion source. Surf. Coat. Technol. 2019. Vol. 365. P. 58—64.

13. Tian L., Zhu X., Tang B., Pan J., He J. Microstructure and mechanical properties of Cr—N coatings by ion-beamassisted magnetron sputtering. Mater. Sci. Eng. A. 2008. Vol. 483—484. P. 751—754.

14. Yokota K., Tamura S., Nakamura K., Horiguchi M., Nakaiwa H., Sugimoto T., Akamatsu K., Nakao K. Dependence of film thickness on nitrogen ion energy and substrate temperature for titanium nitride films on stainless steel using an ion beam assisted deposition technique. Nucl. Instr. Meth. Phys. Res. B. 2000. Vol. 166-167. P. 82—86.

15. Škorić B., Kakaš D., Bibic N., Rakita M. Microstructural studies of TiN coatings prepared by PVD and IBAD. Surf. Sci. 2004. Vol. 566-568. P. 40—44.

16. Vera E., Wolf G.K. Optimisation of TiN—IBAD coatings for wear reduction and corrosion protection. Nucl. Inst. Meth. Phys. Res. B. 1999. Vol. 148. No. 1-4. P. 917—924.

17. Sawase T., Yoshida K., Taira Y., Kamada K., Atsuta M., Baba K. Abrasion resistance of titanium nitride coatings formed on titanium by ion-beam-assisted deposition. J. Oral Rehabil. 2005. Vol. 32. Iss. 2. P. 151—157.

18. Oua Y.X., Wang H.Q., Liao B., M.K. Lei M.K., Ouyang X.P. Tribological behaviors in air and seawater of CrN/TiN superlattice coatings irradiated by high-intensity pulsed ion beam. Ceram. Inter. 2019. Vol. 45. P. 24405—24412.

19. Liang H. Thickness dependent microstructural and electrical properties of TiN thin films prepared by DC reactive magnetron sputtering. Ceram. Inter. 2016. Vol. 42. P. 2641—2647.

20. Abdelrahman M.M. Study of plasma and ion beam sputtering processes. J. Phys. Sci. Appl. 2015. Vol. 5. Iss. 2. P. 128—142.

21. Betsofen S.Ya., Petrov L.M., Lozovan A.A., Lenkovets A.S., Grushin I.A., Lebedev M.A. Effect of bias voltage on texture formation in TiN, ZrN, Ta, Nb and W coatings. J. Phys.: Conf. Ser. 2020. Vol. 1713. No. 1. P. 012010.

22. Betsofen S.Ya., Plikhunov V.V., Petrov L.M., Bannykh I.O. Investigation of the phase composition and structure of multicomponent vacuum ion-plasma coatings (Ti, Nb, Me)N and (Zr, Nb)N(C) depending on their chemical composition and technology parameters. Aviatsionnaya promyshlennost’. 2007. No. 4. P. 9—15 (In Russ.).

23. Arshi N., Lu J., Joo Y.K., Lee C.G., Yoon J.H., Ahmed F. Study on structural, morphological and electrical properties of sputtered titanium nitride films under different argon gas flow. Mater. Chem. Phys. 2012. Vol. 134. Iss. 2-3. P. 839—844.

24. Zhang S., Yan F., Yang Y., Yan M., Zhang Y., Guo J., Li H. Effects of sputtering gas on microstructure and tribological properties of titanium nitride films. Appl. Surf. Sci. 2019. Vol. 488. P. 61—69.

25. Ilyin A.A., Betsofen S.Ya., Skvortsova S.V., Petrov L.M., Bannykh I.O. Structural aspects of ion nitriding of titanium alloys. Metally. 2002. No. 3. P. 6—15 (In Russ.).

26. Petrov I., Hultman L., Sundgren J.E., Greene J.E. Polycrystalline TiN films deposited by reactive bias magnetron sputtering: Effects of ion bombardment on resputtering rates, film composition, and microstructure. J. Vacuum Sci. Technol. A. 1992. Vol. 10. P. 265—272.

27. Somekh R.E. The thermalization of energetic atoms during the sputtering process. J. Vacuum Sci. Technol. A. 1984. Vol. 2. P. 1285—1291.

28. Betsofen S.Ya., Ashmarin A.A., Petrov L.M., Grushin I.A., Lebedev M.A. Influence of the parameters of the ion-plasma process on the texture and properties of TiN and ZrN coatings. Deformatsiya i razrushenie materialov. 2021. No. 4. P. 2—9 (In Russ.).

29. Saerens A., Van Houtte P., Meert B., Quaeyhaegens C. Assesment of different X-ray stress measuring techniques for thin titanium nitride coatings. J. Appl. Cryst. 2000. Vol. 33. P. 312—322.


Review

For citations:


Lozovan A.A., Betsofen S.Ya., Lyakhovetskiy M.A., Pavlov Yu.S., Grushin I.A., Kubatina E.P., Nikolaev I.A. Structure and properties of TiN–Pb composite coatings deposited on VT6 alloy by DC magnetron sputtering. Izvestiya. Non-Ferrous Metallurgy. 2021;(4):70-77. (In Russ.) https://doi.org/10.17073/0021-3438-2021-4-70-77

Views: 445


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)