Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Effect of strain rate on the microstructure and mechanical properties of aluminum alloy AA2B06-O of the Al–Cu–Mg system

https://doi.org/10.17073/0021-3438-2021-4-59-69

Abstract

The study covers the tensile properties and microstructure of AA2B06-O aerospace aluminum alloy (Al–Cu–Mg system) at low (0.001–1.0 s–1) and high (1293–5045 s–1) strain rates. The stain rate at relatively slow (quasistatic) tension has a small effect on mechanical properties. Rasing strain rate at fast (dynamic) loading results in a substantial (nearly twofold) simultaneous increase in the ultimate tensile strength and plasticity (elongation to failure) of the alloy with the yield stress virtually unchanged. Transmission electron microscopy revealed a homogeneous nature of plastic deformation on the microlevel at slow loading and inhomogeneous one at fast loading. The latter is observed as localized deformation in the form of adiabatic microshear bands where complex dislocation structures are formed such as dislocation tangles, dipole and multipole configurations. The first stage of dynamic recrystallization is observed in certain domains of microshear bands due to the heat released at localized plastic deformation. It was shown that the changeover of deformation mechanisms when passing from the quasistatic to dynamic tension causes a significant change in mechanical behavior of the material. Thus, a simultaneous increase in both strength and plasticity can take place not only in nanostructured materials obtained by severe plastic deformation techniques (e.g. equal channel angular pressing), but also at the high strain rate deformation of an aluminum alloy having an «ordinary» microstructure after rolling and low-temperature annealing. The experimental results open up new prospects for practical application of high strain rate pulse deformation methods, such as impact hydroforming, for producing complex-shape articles from sheet blanks in one operation due to substantially improved technological plasticity of the material.

About the Authors

B. B. Khina
Belorussian State Aviation Academy; Physicotechnical Institute, National Academy of Sciences of Belarus
Belarus

Dr. Sci. (Phys.-Math.), Professor of the Department of natural and general engineering sciences, Belorussian State Aviation Academy; Principal research scientist of the Laboratory of high pressures and special alloys

77 Uborevich Str., Minsk, 220096, Belarus

10 Kuprevich str., Minsk, 220141, Belarus



A. I. Pokrovsky
Physicotechnical Institute, National Academy of Sciences of Belarus
Belarus

Cand. Sci. (Eng.), Head of the Laboratory of HPSA

10 Kuprevich str., Minsk, 220141



Zhang Shi-Hong
Institute of Metal Research, Chinese Academy of Sciences
China

Prof., Leader of Advanced metal forming technology (AMFT) group, Vice Director of special materials and devices, Director of Engineering research centre for precision copper tubes

72 Wenhua Road, Shenyang, 110016



Xu Yong
Institute of Metal Research, Chinese Academy of Sciences
China

Associate prof., PhD, Member of AMFT Group

72 Wenhua Road, Shenyang, 110016



Chen Da-Yong
Institute of Metal Research, Chinese Academy of Sciences
Russian Federation

PhD student of AMFT Group

72 Wenhua Road, Shenyang, 110016



А. А. Marysheva
Physicotechnical Institute, National Academy of Sciences of Belarus
Belarus

Researcher, Laboratory of HPSA

10 Kuprevich str., Minsk, 220141



References

1. Pokrovsky A.I. Development of technologies of plastic metal forming using intermediate media (hydrodynamic extrusion, impact hydroforming). Izvestiya NAN Belarusi. Ser. fiz.-tekhn. nauk. 2016. No. 1. P. 80—92 (In Russ.).

2. Ma Y., Xu Y., Zhang S.H., Banabic D., El-Aty A.A., Chen D.Y., Cheng M., Song H.W., Pokrovsky A.I., Chen G.Q. Investigation on formability enhancement of 5A06 aluminium sheet by impact hydroforming. CIRP Annals — Manufact. Technol. 2018. Vol. 67. P. 281—284. DOI: 10.1016/j.cirp.2018.04.024.

3. Zhang S.H., Ma Y., Xu Y., El-Aty A.A., Chen D.Y., Shang Y.L., Chen G.Q., Pokrovsky A.I. Effect of impact hydroforming loads on the formability of AA5A06 sheet metal. IOP Conf. Ser.: Mater. Sci. Eng. 2018. Vol. 418. No. 1. Art. 012114. DOI: 10.1088/1757-899X/418/1/012114.

4. Chen D.Y., Xu Y., Zhang S.H, Ma Y., El-Aty A.A., Banabic D., Pokrovsky A.I., Bakinovskaya A.A. A novel method to evaluate the high strain rate formability of sheet metals under impact hydroforming. J. Mater. Proc. Technol. 2021. Vol. 287. Art. 116553. DOI: 10.1016/j.jmatprotec.2019.116553.

5. Hopkinson B. A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets. Philos. Trans. Roy. Soc. London. Ser. A. 1914. Vol. 213. No. 497-508. P. 437—456. DOI: 10.1098/rsta.1914.0010.

6. Vashchenko A.P. Experimental methods and mechanical properties of structural materials subjected to high-rate deformation 102—105 s–1 at temperatures of 77—773 K. Strength of Materials. 2002. Vol. 34. No. 3. P. 246—250. DOI: 10.1023/A:1016258314337.

7. Stepanov G.V. Elastoplastic deformation and fracture of materials at pulsed loading. Kiev: Naukova dumka, 1991 (In Russ.).

8. Brandon D., Kaplan W.D. Microstructural characterization of materials. Chichester, England: John Wiley & Sons, 2008.

9. Belov N.A. Phase composition of aluminum alloys. Moscow: MISIS, 2009 (In Russ.).

10. Belov N.A., Eskin D.G., Aksenov A.A. Multicomponent phase diagrams: Applications for commercial aluminum alloys. Amsterdam: Elsevier, 2005.

11. Balandin Vl.Vas., Balandin Vl.Vl., Bragov A.M., Igumnov L.A., Konstantinov A.Yu., Logumnov A.K. High-rate deformation and fracture of steel 09G2S. Mechanics of Solids. 2014. Vol. 49. No. 6. P. 666—672. DOI: 10.3103/S0025654414060089.

12. Zubov V.I., Stepanov V., Shirokov A.V. Effect of the strain rate on the yield strength of steels of different strength. Strength of Materials. 2003. Vol. 35. No. 5. P. 514—520. DOI: 10.1023/B:STOM.0000004540.92311.73.

13. Schaefer H.-E. Nanoscience: The science of the small in physics, engineering, chemistry, biology and medicine. Heidelberg etc.: Springer, 2010.

14. Chuvil’deev V.N., Kopylov V.I. Structure and properties of materials produced by severe plastic deformation. In: Fundamentals and engineering of severe plastic deformation (Eds. V.M. Segal, I.J. Beyerlein, C.N. Tome, V.N. Chuvil’deev, V.I. Kopylov). NY: Nova Science Publ., Inc., 2010. P. 291—509.

15. Mungole T., Kumar P., Kawasaki M., Langdon T.G. The contribution of grain boundary sliding in tensile deformation of an ultrafine-grained aluminum alloy having high strength and high ductility. J. Mater. Sci. 2015. Vol. 50. No. 10. P. 3549—3561. DOI: 10.1007/s10853-015-8915-2.

16. Worswick M.J., Smerd R., Salisbury C.P., Winkler S., Lloyd D.J. High strain rate behaviour of aluminium alloy sheet. Mater. Sci. Forum. 2006. Vol. 519—521. P. 139—146. DOI: 10.4028/www.scientific.net/msf.519-521.139.

17. Lee W.-S., Lin C.-F. Effects of prestrain and strain rate on dynamic deformation characteristics of 304L stainless steel: Pt. 2. Microstructural study. Mater. Sci. Technol. 2002. Vol. 18. No. 8. P. 877—884. DOI: 10.1179/026708302225004720.

18. Owolabi G., Odoh D., Peterson A., Odeshi A., Whitworth H. Measurement of the deformation of aluminum alloys under high strain rates using high speed digital cameras. World J. Mechanics. 2013. Vol. 3. No. 2. P. 112—121. DOI: 10.4236/wjm.2013.32009.

19. Li Z., Wang B., Zhao S., Valiev R.Z., Vecchio K.S., Meyers M.A. Dynamic deformation and failure of ultrafine-grained titanium. Acta Mater. 2016. Vol. 125. P. 210—218. DOI: 10.1016/j.actamat.2016.11.041.

20. Meyers M.A. Dynamic behavior of materials. NY: John Wiley & Sons, 1994.

21. Dodd B., Bai Y. (Eds.). Adiabatic shear localization: Frontiers and advances. 2nd ed. Amsterdam: Elsevier Ltd., 2012.

22. Murr L.E., Trillo E.A., Pappu S., Kennedy C. Adiabatic shear bands and examples of their role in severe plastic deformation. J. Mater. Sci. 2002. Vol. 37. No. 16. P. 3337—3360. DOI: 10.1023/A:1016541023502.

23. Richert M., Leszczynska B. Structure and properties of dynamically compressed Al99.5 and AlCuZr alloy. J. Alloys Compd. 2004. Vol. 382. P. 305—310. DOI: 10.1016/j.jallcom.2004.06.004.

24. Leszczynska-Madej B., Richert M. The effect of strain rate on the evolution of microstructure in aluminium alloys. J. Microscopy. 2010. Vol. 237. Pt. 3. P. 399—403. DOI: 10.1111/j.1365-2818.2009.03271.x.

25. Leszczynska-Madej B., Richert M. The effect of dynamic compression on the evolution of microstructure in aluminium and its alloys. Arch. Metal. Mater. 2013. Vol. 58. No. 4. P. 1097—1103.

26. Honeycombe R.W.K. The Plastic deformation of metals. London, UK: Edward Arnold Publ. Ltd., 1968.

27. Hirsch P.B. Work hardening. In: The Physics of metals. Vol. 2. Defects (Ed. P.B. Hirsch). Cambridge, UK: Cambridge University Press, 1975. P. 189—246.


Review

For citations:


Khina B.B., Pokrovsky A.I., Shi-Hong Zh., Yong X., Da-Yong Ch., Marysheva А.А. Effect of strain rate on the microstructure and mechanical properties of aluminum alloy AA2B06-O of the Al–Cu–Mg system. Izvestiya. Non-Ferrous Metallurgy. 2021;(4):59-69. (In Russ.) https://doi.org/10.17073/0021-3438-2021-4-59-69

Views: 551


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)