Modification of Al–Mg–Si casting aluminum alloys by liquid phase processing with nanosecond electromagnetic pulses
https://doi.org/10.17073/0021-3438-2021-4-32-41
Abstract
The AA 511 alloy of the Al–Mg–Si system was used as an example to demonstrate that aluminum melt irradiation with nanosecond electromagnetic pulses (NEPs) leads to a significant change in the nature of structure formation during crystallization. It was found that an increase in the frequency of melt irradiation with NEPs is accompanied by the refinement of the alloy structural components, while the greatest grain size reduction of the α-solid solution and intergranular inclusions of the eutectic Mg2Si phase is observed at a NEPs frequency f = 1000 Hz. An increase in the NEPs frequency leads to a significant increase in the concentration of magnesium in the α-solid solution and the fragmentation of Mg2Si phase intergranular inclusions, which is released in the form of compact isolated inclusions when the melt is irradiated at a frequency of 1000 Hz. It was shown that melt processing with NEPs leads to an increase in the Brinell hardness of as-cast specimens, as well as to a significant increase in the microhardness of α-solid solution grains (from 38.21 HV in the initial state to 61.85 HV after irradiation with a frequency of 1000 Hz). It was assumed that the effect of a pulsed electromagnetic field leads to a decrease in the critical values of the Gibbs free energy required to initiate nucleation processes, and to a decrease in the surface tension at the «growing crystal – molten metal» interface, which causes a modifying effect on the alloy structure due to a decrease in the critical size of crystal nuclei.
Keywords
About the Authors
V. B. DeevRussian Federation
Dr. Sci. (Eng.), Prof. of the School of Mechanical Engineering and Automation of Wuhan Textile University; Chief researcher of the Laboratory «Ultrafine-grained metallic materials», Prof. of the Department of metal forming
119991, Russia, Moscow, Leninkii pr., 4
E. Kh. Ri
Russian Federation
Dr. Sci. (Eng.), Prof., Chief researcher, Head of the Department of foundry and metal technology
680035, Russia, Khabarovsk, Tikhookeanskaya str., 136
E. S. Prusov
Russian Federation
Cand. Sci. (Eng.), Associate prof., Department of functional and constructional materials technology
600000, Russia, Vladimir, Gorky str., 87
M. A. Ermakov
Russian Federation
Cand. Sci. (Tech.), Associate prof., Department of foundry and metal technology
680035, Russia, Khabarovsk, Tikhookeanskaya str., 136
A. V. Goncharov
Russian Federation
Cand. Sci. (Tech.), Associate prof., Department of foundry and metal technology
680035, Russia, Khabarovsk, Tikhookeanskaya str., 136
References
1. Wang L., Makhlouf M., Apelian D. Aluminium die casting alloys: Alloy composition, microstructure, and properties-performance relationships. Int. Mater. Rev. 1995. Vol. 40. P. 221—238.
2. Aluminum casting market size, share & trends analysis report by process (die casting, permanent mold casting), by end use (transportation, industrial), and segment forecasts. 2020—2027. https://www.grandviewresearch.com(accessed: 30.11.2020).
3. Stojanovic B., Bukvic M., Epler I. Application of aluminum and aluminum alloys in engineering. Appl. Eng. Lett. 2018. Vol. 3. No. 2. P. 52—62.
4. Gloria A., Montanari R., Richetta M., Varone A. Alloys for aeronautic applications: state of the art and perspectives. Metals. 2019. Vol. 9. Art. 662.
5. Caceres C. Economical and environmental factors in light alloys automotive applications. Metall. Mater. Trans. A. 2007. Vol. 38. P. 1649—1662.
6. Jarry P., Rappaz M. Recent advances in the metallurgy of aluminium alloys. Pt. I: Solidification and casting. C. R. Phys. 2018. Vol. 19. P. 672—687.
7. Murty B.S., Kori S.A., Chakraborty M. Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying. Int. Mater. Rev. 2002. Vol. 47. No. 1. P. 3—29.
8. Quested T.E., Greer A.L. Grain refinement of Al alloys: Mechanisms determining as-cast grain size in directional solidification. Acta. Mater. 2005. Vol. 53. P. 4643—4653.
9. Greer A.L., Cooper P.S., Meredith M.W., Schneider W., Schumacher P., Spittle J.A., Tronche A. Grain refinement of aluminium alloys by inoculation. Adv. Eng. Mater. 2003. Vol. 5. P. 81—91.
10. Fan Z., Gao F., Jiang B., Que Z. Impeding nucleation for more significant grain refinement. Sci. Rep. 2020. Vol. 10. Art. 944 .
11. Deev V.B., Prusov E.S., Kutsenko A.I. Theoretical and experimental evaluation of the effectiveness of aluminum melt treatment by physical methods. Metall. Ital. 2018. No. 2. P. 16—24.
12. Riedel E., Liepe M., Scharf S. Simulation of ultrasonic induced cavitation and acoustic streaming in liquid and solidifying aluminum. Metals. 2020. Vol. 10. Art. 476
13. Deev V.B., Prusov E.S., Ri E.H., Smetanyuk S.V., Feoktistov A.V. Improving the wear resistance of cast aluminum alloys by the melt thermal-rate treatment. J. Phys.: Conf. Ser. 2020. Vol. 1679. Art. 052011.
14. Deev V., Prusov E., Rakhuba E. Physical methods of melt processing at production of aluminum alloys and composites: Opportunities and prospects of application. Mater. Sci. Forum. 2019. Vol. 946. MSF. P. 655—660.
15. Konovalov S.V., Danilov V.I., Zuev L.B., Filip’ev R.A., Gromov V.E. On the influence of the electrical potential on the creep rate of aluminum. Phys. Solid State. 2007. Vol. 49. P. 1457—1459.
16. Zuev L.B., Danilov V.I., Konovalov S.V., Filip’ev R.A., Gromov V.E. Influence of contact potential difference and electric potential on the microhardness of metals. Phys. Solid State. 2009. Vol. 51. No. 6. P. 1137—1141.
17. Zhang L., Li W., Yao J.P., Qiu H. Effects of pulsed magnetic field on microstructures and morphology of the primary phase in semisolid A356 Al slurry. Mater. Lett. 2012. Vol. 66. Iss. 1. P. 190—192.
18. Bai Q.-W., Ma Y.-L., Xing S.-Q., Feng W.-F., Bao X.-Y., Yu W.-X. Refining of a DC-casting aluminum alloy structure using surface electromagnetic pulsing. Chin. J. Eng. 2017. Vol. 39. No. 12. P. 1828—1834.
19. Liotti E., Lui A., Vincent R., Kumar S., Guo Z., Connolley T., Dolbnya I.P., Hart M., Arnberg L., Mathiesen R.H., Grant P.S. A synchrotron X-ray radiography study of dendrite fragmentation induced by a pulsed electromagnetic field in an Al—15Cu alloy. Acta Mater. 2014. Vol. 70. P. 228—239.
20. Bai Q., Wang J., Xing S., Ma Y., Bao X. Crystal orientation and crystal structure of paramagnetic α-Al under a pulsed electromagnetic field. Sci. Rep. 2020. Vol. 10. Art. 10603.
21. Gong Y.-Y., Luo J., Jing J.-X., Xia Z.-Q., Zhai Qi-J. Structure refinement of pure aluminum by pulse magneto-oscillation. Mat. Sci. Eng. A. 2008. Vol. 497. No. 1-2. P. 147—152.
22. Zi B.-T., Ba Q.-X., Cui J.-Z., Bai Y.-G., Na X.-J. Effect of strong pulsed electromagnetic field on metal’s solidified structure. Acta. Phys. Sin. 2000. Vol. 49. No. 5. P. 1013—1014.
23. Ban C.Y., Cui J.Z., Ba Q.X., Lu G.M., Zhang B.J. Influence of pulsed magnetic field on microstructure and macro-segregation in 2024 Al-alloy. Acta Metall. Sin. (Eng. Lett.). 2002. Vol. 15. No. 4. P. 380—384.
24. Vdovin K.N., Dubsky G.A., Deev V.B., Egorova L.G., Nefediev A.A., Prusov E.S. Influence of a magnetic field on structure formation during the crystallization and physicomechanical properties of aluminum alloys. Russ. J. Non-Ferr. Met. 2019. Vol. 60. No. 3. P. 247—252.
25. Zhang L., Zhan W., Jin F., Zhou Q. Microstructure and properties of A357 aluminium alloy treated by pulsed magnetic field. Mater. Sci. Technol. 2018. Vol. 34. No. 6. P. 698—702.
26. Krymsky V., Shaburova N. Applying of pulsed electromagnetic processing of melts in laboratory and industrial conditions. Materials. 2018. Vol. 11. No. 6. Art. 954.
27. Ri E.K., Hosen R., Ermakov M.A., Knyazev G.A., Dzhou B.L., Ri V.E. Solidification of low-silicon iron under the action of nanosecond electromagnetic pulses. Steel Trans. 2013. Vol. 43. No. 8. P. 471—473.
28. Komkov V.G., Gostishchev V.V., Ri E.Kh., Dorofeev S.V. Influence that nanosecond electromagnetic pulses have on the acquisition of tin and the properties of its alloys. Russ. J. Non-Ferr. Met. 2011. Vol. 52. No. 4. P. 344—346.
29. Znamenskii L.G., Ivochkina O.V., Kulakov B.A. Electro-impulsive nanotechnology for preparing an aluminum — Refractory-metal master alloy. Metallurgist. 2005. Vol. 49. No. 1-2. P. 72—76.
30. Shaburova N.A. Changes in metal properties after thermal and electric impulse processing. IOP Conf. Ser. Mater. Sci. Eng. 2015. Vol. 81. Art. 012016.
31. Krymsky V.V., Shaburova N.A., Litvinova E.V. Microstructure and properties of cast metal treated with electromagnetic pulses while in molten state. Mater. Sci. Forum. 2016. Vol. 843. P. 106—110.
32. Deev V., Ri E., Prusov E. Effect of aluminum melt treatment by nanosecond electromagnetic pulses on structure and properties of castings. In: 73-rd World foundry congress «Creative Foundry» (WFC 2018): Proceedings (Polish Foundrymen’s Association). 2018. P. 155—156.
33. Chen H., Jie J., Fu Y., Ma H., Li T. Grain refinement of pure aluminum by direct current pulsed magnetic field and inoculation. Trans. Nonferr. Met. Soc. China. 2014. Vol. 24. P. 1295—1300.
34. Wang B., Yang Y., Zhou J., Tong W. Microstructure refinement of an AZ91D alloy solidified with pulsed magnetic field. Trans. Nonferr. Met. Soc. China. 2008. Vol. 18. P. 536—540.
35. Eckert S., Nikrityuk P.A., Räbiger D., Eckert K., Gerbeth G. Efficient melt stirring using pulse sequences of a rotating magnetic field: Pt I. Flow field in a liquid metal column. Metall. Mater. Trans. B. 2007. Vol. 38. P. 977—988.
36. Choi J.-K., Ohtsuka H., Xu Y.; Choo W.-Y. Effects of a strong magnetic field on the phase stability of plain carbon steels. Scripta Mater. 2000. Vol. 43. P. 221—226.
37. Zhao Z., Liu Y., Liu L. Grain refinement induced by a pulsed magnetic field and synchronous solidification. Mater. Manuf. Process. 2011. Vol. 26. No. 9. P. 1202—1206.
38. Qin J., Bian X., Wang W., Sijusarenko S. I., Ma J., Xu C. Micro-inhomogeneous structure of liquid Al—Fe alloys. Sci. China Ser. E-Technol. Sci. 1998. Vol. 41. P. 182—187.
39. Shepelev L., Manov V. Microinhomogeneity of liquid alloys: Microscopy characterization and new production methods. Microsc. Microanal. 2002. Vol. 8. No. S02. P. 1300—1301.
40. Mi G.B., Li P.J., He L.J. Structure and property of metal melt I: The number of residual bonds after solid-liquid phase changes. Sci. China Phys. Mech. Astron. 2010. Vol. 53. P. 1571—1577.
Review
For citations:
Deev V.B., Ri E.Kh., Prusov E.S., Ermakov M.A., Goncharov A.V. Modification of Al–Mg–Si casting aluminum alloys by liquid phase processing with nanosecond electromagnetic pulses. Izvestiya. Non-Ferrous Metallurgy. 2021;(4):32-41. (In Russ.) https://doi.org/10.17073/0021-3438-2021-4-32-41