Kinetics of sulfuric acid leaching of nickel from grinding waste of rhenium-containing superalloys
https://doi.org/10.17073/0021-3438-2021-4-24-31
Abstract
The paper studies the kinetics of sulfuric acid leaching of nickel, the main component of grinding waste of ZhS-32VI rheniumcontaining heat-resistant superalloy formed during mechanical processing of products and containing such impurities as abrasive materials, oils, ceramics and other contaminants with refractory metal concentration in a solid residue, in agitation mode. The nickel content is 60 %. In addition to nickel, grinding waste contains other metals such as rhenium, chromium, cobalt, tungsten, tantalum, molybdenum, hafnium, titanium, and aluminum. The process of nickel leaching from waste with a sulfuric acid solution was carried out in a thermostated cell at an elevated temperature (55–85 °С), waste : 3 M H2SO4 solution phase ratio of 1 g : 10 ml, and stirring rate of 200 min–1. Kinetics was studied using a fraction of –0.071 mm with the highest yield (49.2 wt.%) in grinding waste. Convex kinetic curves of nickel leaching from waste were obtained. It was found that when the temperature changes from 55 to 85 °С, the time until leaching stops decreases from 220 to 140 min, and nickel recovery from the solution increases from 45 to 99 %. The data of the obtained kinetic curves were linearized according to the «contracting sphere» equation, Gistling–Braunstein and Kazeev–Erofeev equations (the latter is most suitable for description). Taking into account the assessment of anamorphosis correlation coefficients, it was found that nickel leaching from grinding waste is limited by the chemical reaction, and the process proceeds in the kinetic region of the reaction. The apparent activation energy calculated using the Arrhenius equation and rate constants obtained by processing linearized kinetic curves according to the «contracting sphere» model, was 47.5±0.5 kJ/mol. This value confirms the course of the process in the kinetic region where the process can be intensified by increasing its temperature.
About the Authors
I. E. ТаrganovRussian Federation
Postgraduate student, Department of technology of rare elements and nanomaterials, Mendeleev University of Chemical Technology of Russia
125047, Russia, Moscow, Miusskaya sq., 9
I. D. Troshkina
Russian Federation
Dr. Sci. (Eng.), Professor, Department of technology of rare elements and nanomaterials, Mendeleev University of Chemical Technology of Russia
125047, Russia, Moscow, Miusskaya sq., 9
References
1. Kablov E.N., Bondarenko Yu.A., Kolodyazhny M.Yu., Surova V.A., Narskiy A.R. Prospects for the creation of high-temperature heat-resistant alloys based on refractory matrices and natural composites. Voprosy materialovedeniya. 2020. No. 4 (104). P. 64—78 (In Russ.).
2. Petrushin N.V., Ospennikova O.G., Elyutin E.S. Rhenium in monocrystalline heat-resistant nickel alloys for gas turbine engine blades. Aviatsionnye materialy i tekhnologii. 2014. No. S5. P. 5—16 (In Russ.).
3. Palant A.A., Troshkina I.D., Chekmarev A.M., Kostylev A.I. Rhenium technology. Moscow: LLC «Galleyа-Print», 2015 (In Russ.).
4. Ryohei Yagi, Toru H. Okabe. Current status and smelting technologies of rhenium. J. Jap. Inst. Met. Mater. 2016. Vol. 80 (6). P. 341—349. DOI: 10.2320/jinstmet.J2016022.
5. Cheng Tingyu, Xiong Ning, Peng Kaiyuan, Yang Haibing, Yin Jingchuan. Technology of production and application of rhenium and its alloys. Xiyou jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering. 2009. Vol. 38. No. 2. P. 373—376.
6. Bryskin B.D. (Ed.). Proceedings of the International symposium on rhenium and rhenium alloys: TMS Annual Meeting. USA, Orlando (Florida), 1997.
7. Anderson C.D., Taylor P.R., Anderson C.G. Extractive metallurgy of rhenium: A review. Miner. Metal. Process. 2013. Vol. 30. No. 1. P. 59—73.
8. Pollock T.M., Tin S. Nickel-based superalloys for advanced turbine engine: chemistry, microstructure and properties. J. Propuls. Power. 2006. Vol. 22. No. 2. P. 361—374.
9. Mamo S.K., Elie M., Baron M.G., Simons A.M., Gonzalez-Rodriguez J. Leaching kinetics, separation, and recovery of rhenium and component metals from CMSX-4 superalloys using hydrometallurgical processes. Separat. Purif. Technol. 2019. Vol. 212. P. 150—160. DOI: 10.1016/j.seppur.2018.11.023.
10. USGS Mineral Commodity Yearbook 2021. DOI: 10.3133/mcs2021.
11. Kablov E.N., Karpov Yu.A., Titov V.I., Karfidova E.N., Kudryavtseva G.S., Gundobin N.V. Determination of rhenium and ruthenium in nanostructured heat-resistant nickel alloys for aerospace engineering. Zavodskaya laboratoriya. Diagnostika materialov. 2014. Vol. 80. No. 1. P. 6—12 (In Russ.).
12. Kasikov A.G., Petrova A.M. Rhenium recycling. Moscow: RIOR: INFRA-M, 2014 (In Russ.).
13. Yakovlev M.A. Review of methods for processing waste of rhenium-containing alloys. In: Trudy molodykh uchenykh. Vladikavkaz: Vladikavkazskiy nauch. tsentr RAN, 2004. No. 1. P. 23—29 (In Russ.).
14. Singh Gaur R.P., Wolfe T.A., Braymiller S.A. Recycling of rhenium-containing wire scrap. Int. J. Refract. Metal. Hard Mater. 2015. Vol. 50. P. 79—85.
15. Srivastava R.R., Kim M.S., Lee J.C. Novel aqueous processing of the reverted turbine-blade alloy for rhenium recovery. Ind. Eng. Chem. Res. 2016. Vol. 55. No. 29. P. 8191—8199.
16. Mishra B., Anderson C.D., Taylor P.R., Anderson C.G., Apelian D., Blanpain B. CR3 Update: Recycling of strategic metal. JOM. 2012. Vol. 64. No. 4. P. 441—443.
17. Sitting M. Metal and inorganic waste reclaiming. New Jersey: Noyes Data Corp., 1980.
18. Crane O.E. Waste of scattered rare metals. Moscow: Metallurgiya, 1985 (In Russ.).
19. DeBarbadillo J.J. Nickel-based superalloys: physical metallurgy of recycling. Metall. Trans A. Phys. Metall. Mater. Sci. 1983. Vol. 14A. No. 3. P. 329—341.
20. Srivastava R.R., Kim M.S., Lee J.C., Iha M.K., Kim B.S. Resource recycling of superalloys and hydrometallurgical challenges. J. Mater. Sci. 2014. Vol. 49. No. 14. P. 4671—4686.
21. Petrova A.M., Kasikov A.G. Rhenium еxtraction out of wastes after the treatment and service of Ni-base superalloys. Aviatsionnyye materialy i tekhnologii. 2012. No. 3 (24). P. 9—13 (In Russ.).
22. Guro V.P. Ammonium perrhenate purification and rhenium recovery from heat-resistant rhenium nickel superalloys. In: Proc. of 21-st Inter. Conf. on Metallurgy and Materials — Metal 2012 (Czech Republic, Brno, 23—25 May 2012). URL: www.metal2014.com/files/proceedings/02/reports/479.pdf.
23. Lyapin S.B., Shtyrlov P.Yu., Khaytmitov A.A., Guro V.P., Atakuziev A.A. Production of ammonium rhenium acid from Fe—Ni—Re alloy wastes. Gornyy vestnik Uzbekistana. 2005. No. 2 (21). P. 105—106 (In Russ.).
24. Krynitz U., Olbrich A., Kummer W., Schloh M. Method for the decomposition and recovery of metallic constituents from superalloys: Pat. 5776329 (USA). 1998.
25. Palant A.A., Levchuk O.M., Bryukvin V.A., Levin A.M., Paretskii V.M. Complex electrochemical processing of the metallic wastes from a rhenium-containing nickel superalloy in sulfuric acid electrolytes. Russ. Metall. 2011. Vol. 589. P. 589—593. DOI: 10.1134/S0036029511060176.
26. Levchuk O.M., Levin A.M., Bryukvin V.A., Troshkina I.D. Electrochemical processing of W—Re alloy wastes in alkaline electrolytes under the action of alternating current. Tsvetnye Metally. 2016. No. 6 (882). P. 80—84 (In Russ.).
27. Chernyshova O.V., Drobot D.V. Alternatives of electrochemical processing of rhenium-containing heat-resistant alloy. Khimicheskaya tekhnologiya. 2017. No. 1. P. 36—42 (In Russ.).
28. Agapova L.Ya., Abisheva Z.S., Kilibaeva S.K., Yakhiyaeva Zh.E. Electrochemical processing of technogenic waste of rhenium-containing heat-resistant nickel alloys in sulfuric acid solutions. Tsvetnye Metally. 2017. No. 10. P. 69—74 (In Russ.).
29. Kasikov A.G., Petrova A.M., Bagrova E.G. Extraction of rhenium from grinding waste of heat-resistant alloys using liquid extraction. Tsvetnaya metallurgiya. 2009. No. 1. P. 15—20 (In Russ.).
30. Dyatlova N.M., Temkina V.Ya., Kolpakova I.D. Complexons. Moscow: Khimiya, 1970 (In Russ.).
31. Free M.L. Hydrometallurgy: Fundamentals and Applications. NJ, USA: John Wiley & Sons, 2013. Vol. 1. Р. 86—122.
32. Ginstling A.M., Brounshtein B.I. Concerning the diffusion kinetics of reactions in spherical particles. Zhurnal prikladnoj khimii. 1950. No. 23. P. 1249—1259 (In Russ.).
Review
For citations:
Таrganov I.E., Troshkina I.D. Kinetics of sulfuric acid leaching of nickel from grinding waste of rhenium-containing superalloys. Izvestiya. Non-Ferrous Metallurgy. 2021;(4):24-31. (In Russ.) https://doi.org/10.17073/0021-3438-2021-4-24-31