Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Statistical analysis of the distribution of impurities during copper electrorefining

https://doi.org/10.17073/0021-3438-2021-4-16-23

Abstract

Electrolytic copper refining makes it possible to obtain high purity metal, so the analysis of the main ways of impurity transition into electrolysis products is an actual problem. If it is solved, the process can be controlled when changing the composition of raw materials and, as a result, the content of impurities in the anodes. This paper uses the comprehensive analysis and synchronization of a large array of data on impurities concentrations in various process media (anodes, electrolyte, slime, and cathode metal) obtained on the series of commercial cells to identify the directions of impurity flows and relationship between their content in these media. It is shown that the transition of impurities from one process medium (source) to another (receiver) is implemented according to four main patterns: linear increase, no visible dependence, the presence of a limit concentration in the receiver and the presence of a threshold concentration in the source. The paper provides the results obtained in the statistical analysis of the distribution of six impurities (bismuth, arsenic, lead, sulfur, nickel and silver) belonging to different groups in four main pairs of the impurity source – receiver: anode – solution, anode – slime, slime – cathode, solution – cathode. The coefficients of linear regression equations are determined and their significance is estimated for all dependencies of the impurity concentration in the source on the content in the receiver. The coefficients obtained make it possible to explain the impurity transition paths observed in the commercial cells and predict the quality of cathode copper and the composition of slimes when the anode composition changes. The calculations showed that impurities are accumulated in cathodes due to the occlusion of slime particles and incomplete solution removal from the surface of commercial cathodes rather than due to electrochemical reactions. The copper electrorefining technology should be improved and developed so as to find surface-active additives that would prevent the adsorption of suspended slime particles on the cathode surface, as well as better wash them from the electrolyte.

About the Authors

N. I. Ostanin
Ural Federal University
Russian Federation

Cand. Sci. (Eng.), Assistant prof., Department of the technology of electrochemical manufactures (TEM)

620062, Russia, Ekaterinburg, Mira str., 28



V. M. Rudoy
Ural Federal University
Russian Federation

Dr. Sci. (Chem.), Prof., Department of TEM

620062, Russia, Ekaterinburg, Mira str., 28



I. P. Demin
Ural Research Technological Institute
Russian Federation

Cand. Sci. (Chem.), Production director, Ural Research Technological Institute

620027, Russia, Ekaterinburg, Lunacharsky str., 31



T. N. Ostanina
Ural Federal University
Russian Federation

Dr. Sci. (Chem.), Prof., Department of TEM

620062, Russia, Ekaterinburg, Mira str., 28



V. S. Nikitin
Ural Federal University
Russian Federation

Cand. Sci. (Chem.), Senior lecturer, Department of TEM

620062, Russia, Ekaterinburg, Mira str., 28



References

1. GOST 859-2014. Copper. Grades. Introduced on 2015-07-01. Moscow: Standartinform, 2015 (In Russ.).

2. Baimakov Yu.V., Zhurin A.I. Electrolysis in hydrometallurgy. Moscow: Metallurgiya, 1977 (In Russ.).

3. Vol’khin A.I., Eliseev E.I., Zhukov V.P., Smirnov B.N. Anode and cathode copper. Chelyabinsk: Yuzhno-Ural’skoe knizhnoe izdatel’stvo, 2001 (In Russ.).

4. Schlesinger M.E., King M.J., Sole K.C., Davenport W.G. Extractive metallurgy of copper (5-th Ed.). Elsevier, 2011. P. 251—280. DOI: 10.1016/B978-0-08-096789-9. 10014-9.

5. Demin I.P., Rudoy V.M., Ostanin N.I., Plekhanov K.A. Analysis of the ways of ingress of impurities into the cathode copper in the practice of electrolytic refining. Tsvetnye metally. 2002. No. 5. Р. 23—28 (In Russ.).

6. Rudoy V.M., Ostanin N.I., Zaikov Yu.P., Demin I.P., Ashikhin V.V. The new approach to a choice of surfactants for electrorefining copper. In: Proc. Eur. Metal. Conf. ЕМС (18—21 Sept. 2005). Dresden, Germany, 2005. Vol. 1. P. 153—164.

7. Noguchi F., Iida N., Nakamura T., Ueda Y. Behaviour of anode impurities in copper electrorefining. Metal. Rev. MMIJ. 1992. Vol. 8. No. 2. P. 83—98.

8. Möller C.A., Bayanmunkh M., Friedrich B. Influence of As, Sb, Bi and O on copper anode behaviour. Pt. 3: Elemental distribution. World of Metallurgy (ERZMETALL). 2009. Vol. 62. No. 2. P. 70—80.

9. Zeng W., Wang S., Free M.L. Experimental and simulation studies of electrolyte flow and slime particle transport in a pilot scale copper electrorefining cell. J. Electrochem. Soc. 2016. Vol. 163. No. 5. Р. E111—E122. DOI: 10.1149/2.0181605jes.

10. Möller C.A., Bayanmunkh M., Friedrich B. Influence of As, Sb, Bi and O on copper anode behaviour. Pt. 2: Anode dissolution behaviour and anode sludge generation. World of Metallurgy (ERZMETALL). 2009. Vol. 62. No. 1. P. 6—16.

11. Zeng W., Free M.L., Wang S. Studies of anode slime sintering/ coalescence and its effects on anode slime adhesion and cathode purity in copper electrorefining. J. Electrochem. Soc. 2016. Vol. 163. No. 2. Р. E14—E31. DOI: 10.1149/2.0681602jes.

12. Zeng W., Free M.L., Werner J., Wang S. Simulation and validation studies of impurity particle behavior in copper electrorefining. J. Electrochem. Soc. 2015. Vol. 162. No. 14. Р. E338—E352. DOI: 10.1149/2.0561514jes.

13. Zeng W., Werner J., Free M.L. Experimental studies on impurity particle behavior in electrolyte and the associated distribution on the cathode in the process of copper electrorefining. Hydrometallurgy. 2015. Vol. 156. P. 232—238. DOI: 10.1016/j.hydromet.2015.06.005.

14. Chen T.T., Dutrizac J.E. Mineralogical characterization of a copper anode and the anode slimes from the La Caridad Copper Refinery of Mexicana De Cobre. Metall. Mater. Trans. B. 2005. Vol. 36. No. 2. P. 229—240. DOI: 10.1007/s11663-005-0024-1.

15. Chen T.T., Dutrizac J.E. A Mineralogical overview of the behavior of nickel during copper electrorefining. Metall. Mater. Trans. B. 1990. Vol. 21. No. 2. P. 229—238. DOI: 10.1007/BF02664190.

16. Moats M.S., Wang S., Kim D. A review of the behavior and deportment of lead, bismuth, antimony and arsenic in copper electrorefining. In: T.T. Chen Honorary Symposium on Hydrometallurgy, Electrometallurgy and Materials Characterization (11—15 March 2012). Orlando, Florida, USA, 2012. P. 3—21. DOI: 10.1002/9781118364833.ch1.

17. Bounoughaz M., Manzini M., Ghali E. Behaviour of copper anodes containing oxygen, silver and selenium impurities during electro-refining. Canadian Metallurgical Quarterly. 1995. Vol. 34. No. 1. P. 21—26. DOI: 10.1016/0008-4433(94)00014-B.

18. Wang S. Impurity control and removal in copper tankhouse operations. JOM. 2004. Vol. 56. No. 7. P. 34—37. DOI: 10.1007/s11837-004-0089-3.

19. Gu Z.H., Chen J., Fahidy T.Z. A study of anodic slime behavior in the electrorefining of copper. Hydrometallurgy. 1995. Vol. 37. No. 2. P. 149—167. DOI: 10.1016/0304-386X(94)00044-4.

20. Wang X., Chen Q., Yin Z., Wang M., Xiao B., Zhang F. Homogeneous precipitation of As, Sb and Bi impurities in copper electrolyte during electrorefining. Hydrometallurgy. 2011. Vol. 105. No. 3-4. P. 355—358. DOI: 10.1016/j.hydromet.2010.10.004.

21. Chen T.T., Dutrizac J.E. Mineralogy of copper electrorefining. JOM. 1990. Vol. 42. No. 8. P. 39—44. DOI: 10.1007/BF03221053.

22. Jafari S., Kiviluoma M., Kalliomäki T., Klindtworth E., Arif Tirto Ajia, Aromaa J., Wilson B.P., Lundströma M. Effect of typical impurities for the formation of floating slimes in copper electrorefining. Int. J. Miner. Process. 2017. Vol. 168. No. 10. P. 109—115. DOI: 10.1016/j.minpro.2017.09.016.


Review

For citations:


Ostanin N.I., Rudoy V.M., Demin I.P., Ostanina T.N., Nikitin V.S. Statistical analysis of the distribution of impurities during copper electrorefining. Izvestiya. Non-Ferrous Metallurgy. 2021;(4):16-23. (In Russ.) https://doi.org/10.17073/0021-3438-2021-4-16-23

Views: 397


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)