Purification of alumina-containing sweepings by dry air classification methods
https://doi.org/10.17073/0021-3438-2021-3-73-84
Abstract
The article deals with the formation and processing of waste at aluminum production plants. Based on the analysis of literary sources and practical data, the reasons for the formation of metallurgical waste in the territory of the Russian Federation are established. The analysis of research conducted in scientific organizations is presented. It was found that one of the most promising for waste processing is alumina-containing sweepings formed during the production of liquid aluminum in Soderberg cells during various process operations. Alumina-containing sweepings are waste of complex variable composition swept away in electrolysis shops. It was found that alumina-containing sweepings consist of cryolite (Na3AlF6), chiolite (Al3F14Na5), corundum (Al2O3), siderite (FeCo3), pyrite (FeS2), quartz (SiO2), feldspar ((Ca, Na)(Al, Si) AlSi2O8), carbonaceous matter and (NaF)•1,5CaF2•AlF5 technogenic phase. Their processing is of interest due to the fact that they contain a significant amount of valuable components (Na3AlF6, Al2O3, AlF3) that can be extracted and reused in aluminum production to reduce the cost per unit. The problem is that sweepings contain components (SiO2, Fe2O3), which have a negative effect on the electrolysis process when in contact with electrolyte. The data obtained when studying the chemical composition of monofractions made it possible to conclude that the exclusion of the dark (grayish-black mass) with the maximum content of impurities (SiO2, Fe2O3) will substantially solve the stated problem of the study. Based on the hypothesis put forward, the paper presents the results of 0—10 mm and 0—5 mm sweepings air classification in cascade-gravity and centrifugal classifiers. Based on the studies conducted, we recommend using 0—10 mm sweepings air classification in the cascade gravity classifier in the processing flow of alumina-containing sweepings of aluminum production.
Keywords
About the Authors
A. E. BurdonovRussian Federation
Cand. Sci. (Eng.), associate prof. of the Department of mineral processing and environmental protection of the Irkutsk National Research Technical University (INRTU).
664074, Irkutsk, Lermontov str., 83.
V. V. Barakhtenko
Russian Federation
Cand. Sci. (Eng.), associate prof. of the Department of mineral processing and environmental protection, INRTU.
664074, Irkutsk, Lermontov str., 83.
E. V. Zelinskaya
Russian Federation
Dr. Sci. (Eng.), prof. of the Department of mineral processing and environmental protection, INRTU.
664074, Irkutsk, Lermontov str., 83.
L. V. Gavrilenko
Russian Federation
Cand. Sci. (Eng.), manager of the LLC «Engineering and Technology Center RUSAL».
660067, Krasnoyarsk, Pogranichnikov str., 37/1.
References
1. Barcelos D.A., Pontes F.V.M., Da Silva F.A.N.G., Castro D.C., Dos Anjos N.O.A., Castilhos Z.C. Gold mining tailing: Environmental availability of metals and human health risk assessment. J. Hazard. Mater. 2020. Vol. 397. Art. 122721. https://doi.org/10.1016/j.jhazmat.2020.122721.
2. Ling Q., Dong F., Yang G., Han Y., Nie X., Zhang W., Zong M. Spatial distribution and environmental risk assessment of heavy metals identified in soil of a decommissioned uranium mining area. Hum. Ecolog. Risk Assess. 2020. Vol. 26. No. 5. P. 1149—1163. https://doi.org/10.1080/10807039.2019.1630601.
3. Huan S., Wang Y., Peng J., Di Y., Li B., Zhang L. Recovery of aluminum from waste aluminum alloy by low-temperature molten salt electrolysis. Miner. Eng. 2020. Vol. 154. Art. 154.106386. https://doi.org/10.1016/j.mineng.2020.106386.
4. Samara F., Attia N., Khamis M., Ali M.H., Alam I. Is acid treatment of secondary aluminum waste products prior to storage and disposal a viable option? Environ. Nanotech-nol. Monitor. Manag. 2020. Vol. 14. Art. 100322 https://doi.org/10.1016/j.enmm.2020.100322.
5. Alzubaidi R. Recycling of aluminum byproduct waste in concrete production. Jordan J. Civ. Eng. Irbid: Jordan Univ Sci. Technol., 2017. Vol. 11. No. 1. P. 15—29.
6. Bazhirov N.S., Dauletiyarov M.S., Bazhirov T.S., Serikbayev B.E., Bazhirova K.N. Research of waste of aluminum production as the raw components in technology of composite cementing materials. News Nat. Acad. Sci. Rep. Kazakh. Ser. Geol. Techn. Sci. 2018. Vol. 1. No. 427. P. 93—98.
7. Mandal A.K., Verma H.R., Sinha O.P. Utilization of aluminum plant's waste for production of insulation bricks. J. Clean. Product. 2017. Vol. 162. P. 949—957. https://doi.org/10.1016/j.jclepro.2017.06.080.
8. Xu S., Yang X.-H., Tang S.-S., Liu J. Liquid metal activated hydrogen production from waste aluminum for power supply and its life cycle assessment. Int. J. Hydrogen Energy. 2019. Vol. 44. No. 33. P. 17505—17514. https://doi.org/10.1016/j.ijhydene.2019.05.176.
9. Guo Y., Yu Y., Ren H., Xu L. Scenario-based DEA assessment of energy-saving technological combinations in aluminum industry. J. Clean. Product. 2020. Vol. 260. Art. 260.121010. https://doi.org/10.1016/j.jclepro.2020.121010.
10. Burdonov A.E., Zelinskaya E.V. Complex technology development for processing secondary raw materials of aluminum production for use in the electrolysis process. In: Proc. 29-th Intern. Mineral Processing Congress IMPC-2018 (Moscow, Russia, 17—21 Sept. 2018). Canada: Canad. Institute of Mining, Metallurgy and Petroleum, 2019. P. 3028—3035.
11. Lu T.-T., Li R.-B., Zhao H.-L., Xie M.-Z., Liu F.-Q. Numerical simulation of electro-thermal coupling process for spent cathode carbon block from aluminum electrolysis cell. Gongcheng Kexue Xuebao (Chin. J. Eng.). 2020. Vol. 42. No. 6. P. 731—738. https://doi.org/10.13374/j.issn2095-9389.2019.06.10.002.
12. Rzhechitskiy E.P., Kondratev V.V., Karlina A.I., Shakhray S.G. Aluminium fluoride obtaining from aluminium production wastes. Tsvetnye Metally. 2016. No. 4. P. 23—26 (In Russ.).
13. Castelli A.F., Elsido C., Scaccabarozzi R., Nord L.O., Martel-li E. Optimization of organic rankine cycles for waste heat recovery from aluminum production plants. Front. Energy Res. 2019. Vol. 7. June. Art. 44. https://doi.org/10.3389/fenrg.2019.00044.
14. Tang Y., Li Y., Shi Y., Wang Q., Yuan X., Zuo J. Environmental and economic impacts assessment of prebaked anode production process: A case study in Shandong Province, China. J. Clean. Product. 2018. Vol. 196. P. 1657—1668. https://doi.org/10.1016/j.jclepro.2018.06.121.
15. Gao S., Xue J., Lang G., Liu R., Bao C., Wang Z., Zhang F. Experimental study on preparation of prebake anodes with high sulfur petroleum coke desulfurized at high temperatures. Miner. Met. Mater. Ser. 2019. P. 1301—1309. https://doi.org/10.1007/978-3-030-05864-7_160.
16. Burdonov A.E., Zelinskaya E.V., Gavrilenko L.V., Gavrilenko A.A. Investigation of substantial composition of alumina-bearing material of aluminium electrolysers for usage in primary aluminium technology. Tsvetnye Me-tally. 2018. No. 3. P. 32—38 (In Russ.).
17. Vasyunina N.V., Dubova I.V., Belousov S.V., Sharypov N.A. Recycling of electrolytic aluminum production sweepings. Obogashchenie Rud. 2019. No. 2. P. 39—44 (In Russ.).
18. Dou Y.-H., Liu Y., Liu Y.-B., Xia Q.-B. Effect of Si content on friction-wear properties of high-silicon aluminum alloys fabricated by mechanical alloying and hot pressing. Fenmo Yejin Cailiao Kexue yu Gongcheng (Mater. Sci. Eng. Powder Metall.). 2013. Vol. 18. No. 5. P. 669— 674.
19. Mehdi H. Effect of silicon content on the mechanical properties of aluminum alloy. Int. Res. J. Eng. Technol. 2015. Vol. 2. P. 1326—1330.
20. Zhang L., Gao J., Damoah L.N.W. Removal of iron from aluminum: A review. Miner. Process. Extract. Metall. Rev. 2012. Vol. 33. No. 2. P. 99—157. https://doi.org/10.1080/08827508.2010.542211.
Review
For citations:
Burdonov A.E., Barakhtenko V.V., Zelinskaya E.V., Gavrilenko L.V. Purification of alumina-containing sweepings by dry air classification methods. Izvestiya. Non-Ferrous Metallurgy. 2021;(3):73-84. (In Russ.) https://doi.org/10.17073/0021-3438-2021-3-73-84