Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Structure and properties of Ta-Zr alloy obtained by high-speed melt quenching from liquid state

https://doi.org/10.17073/0021-3438-2021-3-66-72

Abstract

The paper considers the effect of Ta-Zr binary system splat quenching implemented by the method of pendant drop melt extraction. The study was conducted using two mixtures of tantalum and zirconium elementary powders with a content of 60 and 6 % of tantalum respectively. After mixing, the compositions were pressed at 250 MPa in a steel mold on a hydraulic press. Sintering was carried out in a vacuum furnace at 1350 °C and a pressure of 10-3 Pa. Splat quenching was carried out in a vacuum at 2•10-2 Pa using electron-beam heating and a spinning disk absorber. Resulting fiber thickness was 15 to 80 gm. The results of testing splat-quenched Ta—Zr alloy discrete fibers and samples formed as a result of rod stock melting by electron-beam heating (as-cast) were studied and compared. It was found that the structure of splat-quenched fibers of the alloy with a Ta content of 6 wt.% consists of 5—10 gm needle-shaped grains, and the alloy with a Ta content of 60 wt.% has a columnar dendritic structure. A study of tantalum and zirconium distribution across the fiber cross-section showed that cooling rate reduction to less than 105 K/s leads to monotectoid transformation in the alloy with a tantalum content of 60 wt.%. It was found that for an alloy with 6 wt.% Ta the fiber microhardness value is 1.5 times higher in comparison with the same alloy without quenching, and for an alloy with Ta 60 wt.% it is higher by a factor of two.

About the Authors

M. M. Serov
All-Russian Scientific Research Institute of Aviation Materials (ARSRIAM); Moscow Aviation Institute (National Research University) (MAI (NRU))
Russian Federation

Dr. Sci. (Eng.), chief researcher of the laboratory «Special metal materials and magnets» of All-Russian Scientific Research Institute of Aviation Materials (ARSRIAM); prof. of the Department of technologies and systems for automated production of metallurgical processes of Moscow Aviation Institute (National Research University) (MAI (NRU)).

105005, Moscow, Radio str., 17; 125993, Moscow, Volokolamsk highway, 4.



A. Yu. Patrushev
All-Russian Scientific Research Institute of Aviation Materials (ARSRIAM); Moscow Aviation Institute (National Research University) (MAI (NRU))
Russian Federation

Technician of the laboratory «Special metal materials and magnets» of ARSRIAM, postgraduate student of the Department of technologies and systems for automated production of metallurgical processes of MAI (NRU).

Moscow, Volokolamsk highway, 4.



D. P. Farafonov
All-Russian Scientific Research Institute of Aviation Materials (ARSRIAM)
Russian Federation

Head of sector of the laboratory «Special metal materials and magnets» of ARSRIAM.

105005, Moscow, Radio str., 17.



R. A. Valeev
All-Russian Scientific Research Institute of Aviation Materials (ARSRIAM)
Russian Federation

Cand. Sci. (Eng.), head of the laboratory «Special metal materials and magnets» of ARSRIAM.

105005, Moscow, Radio str., 17.



A. I. Safaryan
Moscow Aviation Institute (National Research University) (MAI (NRU))
Russian Federation

Cand. Sci. (Eng.), engineer of Department «Materials science and processing technology» of MAI (NRU).

Moscow, Volokolamsk highway, 4.



References

1. Emel'yanov V.S., Godin Yu.G., Evstyukhin A.I. Research of the zirconium—tantalum system. Atomnaya energiya. 1957. Vol. 2 No. 1. P. 42—47 (In Russ.).

2. Emel'yanov V.S., Godin Yu.G., Evstyukhin A.I. Mechanical properties of double and triple alloys of zirconium with tantalum and niobium at room and elevated temperatures. In: Nuclear fuel and reactor materials: Proc. II Int. Conf. on the peaceful uses of atomic energy (Geneva, 1958). 1959. P. 462—473 (In Russ.).

3. Williams D.E., Jaskons R.J., Larsen W.L. The tantalum-zirconium alloy system. Trans. Metall. AIME. 1962. Vol. 224. No. 4. P. 751—756.

4. Pease L.F., Brophy J.H. Some modifications in the diagram for the tantalum—zirconium system. Trans. Metall. AIME. 1963. Vol. 227. No. 5. P. 1245—1249.

5. Smirnov I.V., Tsverova A.S., Grinyaev K.V., Ditenberg I.A. Influence of annealing temperature on microstructure and microhardness of V—Cr—Ta—Zr alloy. In: 16th Int. Conf. of students and young scientists on prospects of fundamental sciences development (Tomsk, 23—26 April 2019). 2019. Vol. 1909. P. 936—941. DOI: 10.1088/1757-899X/597/1/012050.

6. Peradze T., Stamateli I., Cederstrom J., Berikashvili T., Razov A., Gorgadze K. Shape memory effect in Ti—Ta—Zr alloys. Int. J. Appl. Electromagn. Mech. 2006. Vol. 23 (1—2). P. 39—43. DOI: 10.3233/JAE-2006-730.

7. Enayati M.H., Schumacher P., Cantor B. The structure and thermal stability of mechanically alloyed Ni—Nb— Zr amorphous alloys. J. Mater. Sci. 2002. Vol. 37 (24). P. 5255—5259. DOI: 10.1023/A:1021008620711.

8. Deo L.P., Kaufman M.J., Wang B., Nikodemski S. Crystalline phases found in rapidly quenched Ni—Nb—Zr alloys. J. Microscopy. 2017. Vol. 267 (1). P. 49—56. DOI: 10.1111/jmi.12546.

9. Paglieri S.N., Pal N.K., Dolan M.D., Kim S.-M., Chien W.-M., Lamb J. Hydrogen permeability, thermal stability and hydrogen embrittlement of Ni—Nb—Zr and Ni—Nb— Ta—Zr amorphous alloy membranes. J. Membr. Sci. 2011. Vol. 378 (1—2). P. 42—50. DOI: 10.1016/j.memsci.2011.04.049.

10. Kablov E.N. Materials of the new generation and digital technologies of their processing. Vestnik Rossiiskoi academii nauk. 2020. Vol. 90. No. 4. P. 331—334 (In Russ.).

11. Tudoran S., Voiculescu I., Geanta V., Vizureanu P, Mar-za Rosca I., Patra^cu I., Ciocoiu R. Effects of the chemical composition on the microstructural characteristics of Ti—Nb—Ta—Zr alloys. IOP Conf. Ser.: Mater. Sci. Eng. 2019. Vol. 572. P. 1—5. DOI: 10.1088/1757-899X/572/1/012022.

12. Kablov E.N. Innovative development FGUP «VIAM» SSC RF on implementation of the «Strategic directions of development of materials and technologies of their reprocessing for the period till 2030». Aviatsionnye materialy i tekhnologii. 2015. No. 1 (34). P. 3—33 (In Russ.).

13. Grashchenkov D.V., Efimochkin I.Yu., Bol'shakova A.N. High-temperature composite materials reinforced with particles and fibers of refractory compounds. Avia-tsionnye materialy i tekhnologii. 2017. No. S. P. 318—328 (In Russ.).

14. Tang Z.Z., Hsieh J.H., Zhang S.Y., Li C., Fu Y.Q. Phase transition and microstructure change in Ta—Zr alloy films by co-sputtering. Surf. Coat. Technol. 2005. Vol. 198. P. 110—113. DOI: 10.1016/j.surfcoat.2004.10.019.

15. Babashov V.G., Varrik N.M. High-temperature flexible fiber insulation material. Trudy VIAM. 2015. No. 1. P. 15—19. URL: http://www.viam-works.ru (accessed: 29.06.2020) (In Russ.).

16. Yang D., Zhou X., Cheng T., Sun K., Huang D. Development of rotary shear equipment for preparing short metal fibers. In: IEEE 8th Int. Conf. on CIS & RAM (Ningbo, 19—21 Nov. 2017). 2017. P. 105—110. DOI: 10.1109/ICCIS.2017.8274757.

17. Ivakhnenko Yu.A., Baruzdin B.V., Varrik N.M., Maksimov V.G. High-temperature fiber sealing materials. Aviatsionnye materialy i tekhnologii. 2017. No. S. P. 272— 289 (In Russ.).

18. Serov M.M., Borisov B.V. Obtaining metal fibers and porous materials from them by extraction of a hanging drop of melt. Tekhnologiya legkikh splavov. 2007. No. 3. P. 62—65 (In Russ.).

19. Farafonov D.P., Degovets M.L., Aleshina R.Sh. Metal fibers from heat-resistant alloys alloyed with platinum group metals. Aviatsionnye materialy i tekhnologii. 2016. No. 1. P. 44—52 (In Russ.).

20. Li Q., Niinomi M, Hieda J. Deformation-induced a phase in modified Ti—29Nb—13Ta—46 Zr alloy by Cr addition. Acta Biomater. 2013. Vol. 9. P. 8027—8035.

21. Lin Chang, Jue Liu, Hai-Lin Yang. Effects of Zr contents on the microstructure, mechanical properties and biocompatibility of Ta—Zr alloys. Mater. Sci. Forum. 2018. Vol. 914. P. 37—44. DOI: 4028/MSF.914.37.

22. Antsiferov V.N., Serov M.M. Obtaining by quenching from a melt of fibers and materials. LAP LAMBERT Acad. Publ., 2014 (In Russ.).


Review

For citations:


Serov M.M., Patrushev A.Yu., Farafonov D.P., Valeev R.A., Safaryan A.I. Structure and properties of Ta-Zr alloy obtained by high-speed melt quenching from liquid state. Izvestiya. Non-Ferrous Metallurgy. 2021;(3):66-72. (In Russ.) https://doi.org/10.17073/0021-3438-2021-3-66-72

Views: 407


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)