Structure formation and processability of the Al—Zn—Mg—Ca—Fe—Zr—Sc alloy at hot rolling and TIG welding
https://doi.org/10.17073/0021-3438-2021-3-46-56
Abstract
Process conditions are suggested for manufacturing wrought semi-finished products (2 and 1 mm sheets) from the Al-4.5%Zn-2.5%Mg-2.5%Ca-0.5%Fe-0.2%Zr-0.1%Sc experimental alloy including thermomechanical processing at t = 400450 °С and reduction ratios up to 98 %, as well as softening annealing of the sheet metal at t = 350400 °C for 1—2 hours. It was found that the as-cast structure consists of eutectic phases (Al, Zn)4Ca, Al10CaFe2 5 to 25 gm in size, and a Al2Mg5Zn5 nonequilibrium T-phase located along the boundaries of dendritic cells (Al). Zirconium and scandium form a solid solution with aluminum as a result of solidification. After hot rolling, the structure of 2 mm sheets consists of lineage-oriented discrete intermetallic particles and their conglomerates up to 40 gm in size in the (Al) matrix. The structure of 1 mm sheets features by greater fineness and structure uniformity. The fine structure of deformed semi-finished products was analyzed using transmission electron microscopy (TEM), and this analysis showed that nanoparticles in the Al3(Zr, Sc) phase of the L12 structural type are maximum 20 nm in cross-section. The following level of mechanical properties was achieved in wrought semi-finished products: ultimate strength σв ~ 310330 MPa, yield strength σ0,2 ~ 250280 MPa with relative elongation δ ~ 4.57.0 %. The possibility of TIG welding using standard AMg5 wire as a filler material was studied. It was shown that the new alloy demonstrated no tendency to form hot cracks. According to the results of X-ray tomography, the percentage of porosity in the weld was 1.27 vol.%. The prevalent pore diameter did not exceed 0.2 mm. In general, the resulting structural and qualitative parameters of weld joints contribute to obtaining a strength of 75 % of the strength index of the initial wrought semi-finished products (sheets) achieved by stabilizing annealing at t = 350 °С for 3 hours.
About the Authors
Zh. A. KarpovaRussian Federation
Postgraduate student of the Department of metal forming of National University of Science and Technology (NUST) «MISIS»; researcher of the Department of nanotechnology of Keldysh Research Center.
119991, Moscow, Leninkii pr., 4; 125438, Moscow, Onezhskaya str., 8.
P. K. Shurkin
Russian Federation
Cand. Sci. (Eng.), engineer of the Department of metal forming, NUST «MISIS».
119991, Moscow, Leninkii pr., 4.
K. I. Sivtsov
Russian Federation
Engineer of the Department of nanotechnology, Keldysh Research Center.
125438, Moscow, Onezhskaya str., 8.
I. N. Laptev
Russian Federation
Engineer of the Department of nanotechnology, Keldysh Research Center.
125438, Moscow, Onezhskaya str., 8.
References
1. Drits A.M., Ovchinnikov V.V. Aluminium alloys welding. Moscow: Ruda i metally, 2017 (In Russ.).
2. Sheppard T. Extrusion of aluminium alloys. Springer US, 1999. DOI: 10.1007/978-1-4757-3001-2.
3. Kaigorodova L.I., Zamyatin V.M., Popov V.I. Influence of homogenization conditions on the structure and properties of the Al—Mg alloy. Fizika metallov i metallovedenie. 2004. No. 4. P. 75—82 (In Russ.).
4. Kishchik M.S., Mikhailovskaya A.V., Levchenko V.S., Kotov A.D., Drits A.M., Portnoy V.K. Formation of finegrained structure and superplasticity in commercial aluminum alloy 1565ch. Met. Sci. Heat Treat. 2017. Vol. 58. P. 543—547. DOI: 10.1007/s11041-017-0051-y.
5. Drits A.M., Ovchinnikov V.V. Properties of welded joints of 1565h alloy sheets in combination with other aluminum alloys. Tsvetnye metally. 2013. No. 11. P. 84—90 (In Russ.).
6. Belov N.A., Naumova E.A., Akopyan T.K. Eutectic alloys based on aluminum: new alloying systems. Moscow: Ruda i metally, 2016 (In Russ.).
7. Belov N.A., Naumova E.A., Akopyan T.K. Eutectic alloys based on the Al—Zn—Mg—Ca system: microstructure, phase composition and hardening. Mater. Sci. Technol. 2017. Vol. 33. Iss. 6. P. 656—666. DOI: 10.1080/02670836.2016.1229847.
8. Belov N.A., Naumova E.A., Akopyan T.K. Effect of calcium on structure, phase composition and hardening of Al—Zn—Mg alloys containing up to 12 wt.% Zn. Mater. Res. 2015. Vol. 18. Iss. 6. P. 1384—1391. DOI: 10.1590/1516-1439.036415.
9. Naumova E.A., Belov N.A., Bazlova T.A. Effect of heat treatment on structure and strengthening of cast eutectic aluminum alloy Al9Zn4Ca3Mg. Met. Sci. Heat Treat. 2015. Vol. 57. Iss. 5—6. P. 274—280. DOI: 10.1007/s11041-015-9874-6.
10. Naumova E.A. Use of calcium in alloys: From modifying to alloying. Russ. J. Non-Ferr. Met. 2018. Vol. 59. No. 3. P. 284—298. DOI: doi.org/10.3103/S1067821218030100.
11. Volkova O.V., Dub A.V., Rakoch A.G., Gladkova A.A., Samoshina M.E. Comparison of the tendency to pitting corrosion of casting of Al6Ca, Al1Fe, and Al6Ca1Fe experimental alloys and AK12M2 industrial alloy. Russ. J. Non-Ferr. Met. 2017. Vol. 58. Iss. 6. P. 644—648. DOI: 10.3103/S1067821217060153.
12. Belov N.A., Naumova E.A., Ilyukhin V.D., Doroshenko V.V. Structure and mechanical properties of Al—6%Ca—%Fe alloy castings obtained by injection molding. Tsvetnye metally. 2017. No. 3. P. 69—75 (In Russ.).
13. Belov N.A., Akopyan T.K., Mishurov S.S., Korotkova N.O. Effect of Fe and Si on the microstructure and phase composition of the aluminium-calcium eutectic alloys. Non-Ferr. Met. 2017. No. 2. P. 37—42. DOI: 10.17580/nfm.2017.02.07.
14. Shurkin P.K., Belov N.A., Musin A.F., Samoshina M.E. Effect of calcium and silicon on the character of solidification and strengthening of the Al—8%Zn—3%Mg alloy. Phys. Met. Metallogr. 2020. Vol. 121. P. 135—142. DOI: 10.1134/S0031918X20020155.
15. Huang X., Pan Q., Li B., Yin Z., Liu Z., Huang Z. Effect of minor Sc on microstructure and mechanical properties of Al—Zn—Mg—Zr alloy metal—inert gas welds. J. Alloys Compd. 2015. Vol. 629. P. 197—207. DOI: 10.1016/j.jallcom.2014.11.227.
16. Deng Y., Peng B., Xu G., Pan Q., Yin Z., Ye R., Wang Y., Lu L. Effects of Sc and Zr on mechanical property and microstructure of tungsten inert gas and friction stir welded aerospace high strength Al—Zn—Mg alloys. Mater. Sci. Eng. A. 2015. Vol. 639. P. 500—513. DOI: 10.1016/j.msea.2015.05.052.
17. Lei X., Deng Y., Yin Z., Xu G., Peng Y. Microstructure and properties of TIG/FSW welded joints of a new Al—Zn— Mg—Sc—Zr alloy. J. Mater. Eng. Perform. 2013. Vol. 22. Iss. 9. P. 2723—2729. DOI: 10.1007/s11665-013-0577-0.
18. Belov N.A., Alabin A.N., Matveeva I.A. Optimization of phase composition of Al—Cu—Mn—Zr—Sc alloys for rolled products without requirement for solution treatment and quenching. JALCOM. 2014. Vol. 583. P. 206— 213. DOI: 10.1016/j.jallcom.2013.08.202.
19. Akopyan T.K., Letyagin N.V., Doroshenko V.V. Aluminum-matrix composite alloys based on the Al—Ca—Ni—Ce system, hardened by L12 phase nanoparticles without quenching. Tsvetnye metally. 2018. No. 12. P. 56—62 (In Russ.).
20. Akopyan T.K., Belov N.A., Naumova E.A., Letyagin N.V., Sviridova T.A. Al-matrix composite based on Al— Ca—Ni—La system additionally reinforced by L12 type nanoparticles. Trans. Nonfer. Met. Soc. China. 2020. Vol. 30. Iss. 4. P. 850—862. DOI: 10.1016/S1003-6326(20)65259-1.
21. Akopyan T.K., Belov N.A., Latypov R.A., Shurkin P.K., Karpova Zh.A. Deformable weldable aluminum-calcium alloy: Pat. 2716568 (RF). 2020 (In Russ.).
22. Glazoff M.V., Khvan A.V., Zolotorevsky V.S., Belov N.A., Dinsdale A.T. Casting aluminum alloys. 2nd ed.: Their physical and mechanical metallurgy. Butterworth-Heinemann, 2018. DOI: 10.1016/B978-0-12-811805-4.00003-1.
23. GOST 4784-2019. Aluminium and aluminium alloys are deformable. Stamps (In Russ.).
24. Samiuddin M., Li J.L., Taimoor M., Siddiqui M.N., Siddiqui S.U., Xiong J.T. Investigation on the process parameters of TIG-welded aluminum alloy through mechanical and microstructural characterization. Defence Technol. 2020. DOI: 10.1016/j.dt.2020.06.012.
Review
For citations:
Karpova Zh.A., Shurkin P.K., Sivtsov K.I., Laptev I.N. Structure formation and processability of the Al—Zn—Mg—Ca—Fe—Zr—Sc alloy at hot rolling and TIG welding. Izvestiya. Non-Ferrous Metallurgy. 2021;(3):46-56. (In Russ.) https://doi.org/10.17073/0021-3438-2021-3-46-56