Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Influence of cerium on the phase composition and crystallization behavior of cast aluminum alloys based on the Al—Mg—Si system

https://doi.org/10.17073/0021-3438-2021-3-37-45

Abstract

This study was conducted with calculations made in Thermo-Calc software (TCAl4.0 database) to find out the unexplored data on the phase composition, crystallization behavior of Al—Mg—Si—Ce alloys as regards the compositions of two-phase (Al) + Mg2Si cast aluminum-magnesium alloys. It was shown that (Al), Al4Ce, Mg2Si, Al8Mg5 phases may form during crystallization. At 4% Mg and (Si + Ce) concentrations of 1.5 %, a simultaneous increase in Ce and decrease in Si contents from 0.2 % and 1.3 % points promote consistent reactions L + (Al) + Al4Ce and L + (Al) + Al4Ce + Mg2Si. This suggests that the Al4Ce phase may hinder the growth of Mg2Si phase eutectic inclusions. Moreover, at 20 °C such a change in concentrations promotes a simultaneous decrease in the contents of Al4Ce and Al8Mg5 phases, along with a decrease in the amount of magnesium silicide. While adding Ce in the Al—4%Ce—0.5%Si alloy, the fraction of Mg2Si is approximately constant throughout the entire crystallization range (1.34 %), but each 0.1% Ce increases the Ce-bearing intermetallic fraction by 0.17 %, and at 0.7 % Ce the proportions of two phases are equal. When studying the phase composition at representative annealing temperatures of 400 и 550 °C, it was revealed that the (Al) solid solution becomes supersaturated as a result of Al8Mg5 phase dissolving. Each 0.1% Ce increases the Mg content in the (Al) solid solution by 0.005 % in the first case and by 0.01 % in the second one. This indicates a potentially positive influence of Ce on matrix strengthening. Based on the results, it was concluded that it is advisable to add Ce in an amount of up to 0.7 %, which slightly reduces the liquidus temperature (to ~636+638 °C), but reduces the non-equilibrium solidus temperature by ~30 °C to 421 °C. At the same time, at a constant Mg2Si phase formation temperature (581 °C), the eutectic crystallization range (Al)+Al4Ce expands with Ce addition, which can compensate for the decrease in casting properties. The Al—4%Ce—0.5%Si—0.7% Ce alloy has the following phase composition: Al4Ce 1.19 %, the [Mg2Si/Al4Ce] ratio = 0.89, Al8Mg5 fraction is 7.92 % at 20 °C, Mg concentrations in the (Al) solid solution are 3.22 % and 3.36 % at temperatures of 400 °C and 550 °C, respectively. The presented results serve as the basis for subsequent experiments and justify compositions and temperature conditions for obtaining cast aluminum-magnesium alloys with cerium having a modifying effect on Mg2Si eutectic inclusions.

About the Authors

V. B. Deev
Wuhan Textile University; National University of Science and Technology (NUST) «MISIS»
Russian Federation

Dr. Sci. (Eng.), prof. of the School of Mechanical Engineering and Automation of Wuhan Textile University; chief researcher of the Laboratory «Ultrafine-grained metallic materials», prof. of the Department of metal forming of National University of Science and Technology (NUST) «MISIS».

Textile Road, 1, Hongshan District, Wuhan, 430073, P.R. China; 119991, Russia, Moscow, Leninskii pr., 4.



E. S. Prusov
Vladimir State University n.a. A. and N. Stoletovs
Russian Federation

Cand. Sci. (Eng.), associate prof. of the Department of functional and constructional materials technology, Vladimir State University n.a. A. and N. Stoletovs.

600000, Vladimir, Gorky str., 87.



P. K. Shurkin
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Cand. Sci. (Eng.), engineer of the Department of metal forming, NUST «MISIS».

119991, Moscow, Leninskii pr., 4.



E. H. Ri
Pacific National University
Russian Federation

Dr. Sci. (Eng.), prof., chief researcher, head of the Department of foundry and metal technology, Pacific National University.

680035, Khabarovsk, Tikhookeanskaya str., 136.



S. V. Smetanyuk
Siberian Federal University
Russian Federation

Master's student, Department of foundry, Siberian Federal University.

660041, Krasnoyarsk, Svobodnyi pr., 4.



References

1. Belov N.A. Phase composition of industrial and promising aluminum alloys. Moscow: MISIS, 2010 (In Russ.).

2. Kim B.J., Jung S.S., Hwang J.H., Park Y.H., Lee Y.C. Effect of eutectic Mg2Si phase modification on the mechanical properties of Al—8Zn—6Si—4Mg—2Cu cast alloy. Metals. 2019. Vol. 9. No. 1. Art. 32.

3. Prusov E., )eev V., Shunqi M. Thermodynamic assessment of the Al—Mg—Si—Ti phase diagram for metal matrix composites design. Mater. Today Proc. 2019. Vol. 19. P. 2005—2008.

4. Merkulova S.M., Bochvar S.G. Influence of complex out-of-furnace modification on the structure of aluminum ingots. Tsvetnye Metally. 2016. No. 8. P. 80—85 (In Russ.).

5. Eskin ).G., Tzanakis I., Wang F., Lebon G.S.B., Subroto T., Pericleous K., Mid J. Fundamental studies of ultrasonic melt processing. Ultrason. Sonochem. 2019. Vol. 52. P. 455—467.

6. Vdovin K.N., Dubsky G.A., Deev V.B., Egorova L.G., Nefediev A.A., Prusov E.S. Influence of a magnetic field on structure formation during the crystallization and physico-mechanical properties of aluminum alloys. Russ. J. Non-Ferr. Met. 2019. Vol. 60. Iss. 3. P. 247—252.

7. Konovalov S.V., Danilov V.I., Zuev L.B., Filip'ev R.A., Gromov V.E. On the influence of the electrical potential on the creep rate of aluminum. Phys. Solid State. 2007. Vol. 49. No. 8. P. 1457—1459.

8. Wang H., Song G., Tang G. Evolution of surface mechanical properties and microstructure of Ti—6Al—4V alloy induced by electropulsing-assisted ultrasonic surface rolling process. J. Alloys Compd. 2016. Vol. 681. P. 146—156.

9. Zuev L.B., Danilov V.I., Konovalov S.V., Filip'ev R.A., Gromov V.E. Influence of contact potential difference and electric potential on the microhardness of metals. Phys. Solid State. 2009. Vol. 51. No. 6. P. 1137—1141.

10. Rokhlin L.L., Bochvar N.R., Tarytina I.E. Influence of scandium together with zirconium on the structure and strength properties of alloys based on the Al—Mg2Si system. Metally. 2015. No. 5. P. 60—66 (In Russ.).

11. Emamy M., Khorshidi R., Raouf A.H. The influence of pure Na on the microstructure and tensile properties of Al—Mg2Si metal matrix composite. Mater. Sci. Eng. A. 2011. No. 13. P. 4337—4342.

12. Li C., Wu Y., Li H., Wu Y., Liu X. Effect of Ni on eutectic structural evolution in hypereutectic Al—Mg2Si cast alloys. Mater. Sci. Eng. A. 2010. No. 528. P. 573—577.

13. Qin Q.D., Zhao Y.G., Zhou W., Cong P.J. Effect of phosphorus on microstructure and growth manner of primary Mg2Si crystal in Mg2Si/Al composite. Mater. Sci. Eng. A. 2007. No. 447. P. 186—191.

14. Jiang W., Xu X., Zhao Y., Wang Z., Wu C., Pan D., Meng Z. Effect of the addition of Sr modifier in different conditions on microstructure and mechanical properties of T6 treated Al—Mg2Si in-situ composite. Mater. Sci. Eng. A. 2018. No. 721. P. 263—273.

15. Li C., Liua X., Zhang G. Heterogeneous nucleating role of TiB2 or AlP/TiB2 coupled compounds on primary Mg2Si in Al—Mg—Si alloys. Mater. Sci. Eng. A. 2008. No. 497. P. 432—437.

16. Tebib M., Samuel A.M., Ajersch F., Chen X.G. Effect of P and Sr additions on the microstructure of hypereutectic Al—15Si—14Mg—4Cu alloy. Mater. Charact. 2014. No. 89. P. 112—123.

17. Campbell J., Tiryakioglu M. Review of effect of P and Sr on modification and porosity development in Al—Si alloys. Mater. Sci. Technol. 2010. Vol. 26. Iss. 3. P. 262— 268.

18. Wang Y., Liu Q., Yang Z., Qiu C., Tan K. Effect of Ce addition and heat treatment on microstructure evolution and tensile properties of industrial A357 cast alloy. Metals. 2020. Vol. 10. No. 8. Art. 1100.

19. Czerwinski F. Cerium in aluminum alloys. J. Mater. Sci. 2020. No. 55. P. 24—72.

20. Jiang H., Li S., Zheng Q., Zhang L., He J., Song Y., Deng C., Zhao J. Effect of minor lanthanum on the microstructures, tensile and electrical properties of Al—Fe alloys. Mater. Design. 2020. Vol. 195. Art. 108991.

21. Zhao Y.G., Qin Q.D., Zhou W., Liang Y.H. Microstructure of the Ce-modified in situ Mg2Si/Al—Si—Cu. J. Alloys Compd. 2005. Vol. 389. Iss. 1—2. P. L1—L4.

22. Belov N.A., Naumova E.A., Akopyan T.K. Eutectic alloys based on aluminum: new alloying systems. Moscow: Ruda i metally, 2016 (In Russ.).

23. Gureeva M.A., Ovchinnikov V.V., Manakov I.N. Metal science: macro- and microstructures of cast aluminum alloys. 2-e izd. Moscow: Yurait, 2020 (In Russ.).

24. Lu Z., Li X., Zhang L. Thermodynamic description of Al— Si—Mg—Ce quaternary system in Al-rich corner and its experimental validation. J. Phase Equilibria Diffus. 2018. No. 39. P. 57—67.

25. Cui Z., Wu R. Phase diagram and properties of ternary Al—Mg—Ce alloys. Acta Metall. Sin. 1984. Vol. 20. Iss. 6. P. 323—331.

26. Grobner J., Kevorkov D., Schmid-Fetzer R. Thermodynamic modeling of Al—Ce—Mg phase equilibria coupled with key experiments. Intermetallics. 2002. Vol. 19. Iss. 5. P. 415—422.

27. Zhang J., Fan Z., Wang Y., Zhou B. Microstructural development of Al—15wt.%Mg2Si in situ composite 352 with mischmetal addition. Mater. Sci. Eng. A. 2000. No. 281. P. 104—112.


Review

For citations:


Deev V.B., Prusov E.S., Shurkin P.K., Ri E.H., Smetanyuk S.V. Influence of cerium on the phase composition and crystallization behavior of cast aluminum alloys based on the Al—Mg—Si system. Izvestiya. Non-Ferrous Metallurgy. 2021;(3):37-45. (In Russ.) https://doi.org/10.17073/0021-3438-2021-3-37-45

Views: 460


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)