Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Current status in the copper ore processing (review)

https://doi.org/10.17073/0021-3438-2021-3-4-14

Abstract

The article provides the analysis of process flows used for sulfide and oxidized copper ore treatment, reagent schemes, process equipment, indicators of flotation concentration at a number of domestic and foreign concentrating mills and plants. Autogenous and semi-autogenous grinding mills are widely used at the ore preparatory processing at the first stage of grinding to eliminate medium and fine crushing stages. An alternative is the use of high pressure grinding rolls that can reduce electricity consumption as compared to autogenous and semi-autogenous grinding. There is an increase in the use of large-volume and high-performance ore-preparation and flotation equipment for maintaining the quality and quantity of the product. In addition to ball mills, fine and ultrafine regrinding mills of various configurations are widely used at the stage of rougher flotation concentrate regrinding. The analysis of flotation reagents used to improve separation process efficiency was conducted with domestic and foreign approaches to flotation reagent selection shown. It is noted that foreign concentrating mills often use a combination of main and additional collectors. The paper provides the data on flotation reagents used in the copper sulfide and oxidized ore concentration, and their consumption. A combined diagram of flotation-hydrometallurgical processing of mixed copper ore from the Udokan deposit is considered. Conclusions are drawn about current trends in the processing of copper ores including the choice of equipment.

 

About the Authors

T. N. Aleksandrova
Saint Petersburg Mining University
Russian Federation

Dr. Sci. (Eng.), prof., head of the Department of mineral processing, Saint Petersburg Mining University.

199106, St. Petersburg, Vasilievskii Ostrov, 21st Liniya, 2.



A. V. Orlova
Saint Petersburg Mining University
Russian Federation

Postgraduate student at the Department of mineral processing, Saint Petersburg Mining University.

199106, St. Petersburg, Vasilievskii Ostrov, 21st Liniya, 2.



V. A. Taranov
«Mekhanobr Engineering» JSC
Russian Federation

Cand. Sci. (Eng.), chief specialist at the «Mekhanobr Engineering» JSC.

199106, St. Petersburg, Vasilievskii Ostrov, 22nd Liniya, 3, build. 7.



References

1. The IWCC Statistical Bulletin. URL: http://www.coppercouncil.org/iwcc-statistics-and-data (accessed: 03.11.2020).

2. LME Copper. URL: https://www.lme.com/en-GB/Metals/Non-ferrous/Copper#tabIndex=0 (accessed: 03.11.2020).

3. Baranov V.F. Using foreign experience in developing a variant of reconstruction of the Zhezkazgan complex. Obogashchenie Rud. 2020. No. 1. P. 54—59 (In Russ.).

4. Avdokhin V.M. Fundamentals of mineral processing. 4th ed. 2017. Vol. 2. Mineral processing technologies. Moscow: Gornaya kniga, 2017 (In Russ).

5. Kurchukov A.M. The control algorithm reagent conditions of flotation copper-nicel ores on the basis of optimizing the ionic parameters. Zapiski Gornogo Instituta (J. Mining Inst.). 2011. Vol. 189. P. 292—294 (In Russ.).

6. Boduen A.Ya., Ivanov B.S., Ukraintsev I.V. Copper concentration from sulfide ore: State-of-the art and prospects. Non-Ferr. Met. 2015. No. 1. P. 17—20.

7. Ivanov B.S., Boduen A.Ya., Petrov G.V. Russian pyrite copper-zinc ores: Processing problems and technological prospects. Obogashchenie Rud. 2014. No. 3. P. 7—13 (In Russ.).

8. Santo Domingo Technical Report (January 2019). URL: https://capstonemining.com/operations/santo-domingo/default.aspx (accessed: 02.11.2020).

9. ICSG Releases the 2019 Directory of Copper and Copper Alloy Fabricators. The International Copper Study Group (ICSG). URL: http://www.icsg.org/index.php/116-icsg-releases-the-2019-directory-of-copper-and-copper-alloy-fabricators (accessed: 10.01.2020).

10. Minera Tres Valles. URL: https://mineratresvalles.com/ (accessed: 28.10.2020).

11. Yushina T.I., Purev B., D'Eliya Yanes K.S., Namuungerel B. Increasing the efficiency of flotation of porphyry copper ores using additional collectors based on acetylene al cohols. In: Problems and prospects of effective processing of mineral raw materials in the 21st century (Plaksin Readings-2019): Proc. Intern. conf. (Irkutsk, 9—14 Sept. 2019). Irkutsk: Reprocentr A1, 2019. P. 140—144 (In Russ.).

12. Kondrat'ev S.A., Moshkin N.P., Konovalov I.A. Collecting ability of easily desorbed xanthates. J. Min. Sci. 2015. Vol. 51. No. 4. P. 830—838.

13. Kondrat'ev S.A., Moshkin N.P., Burdakova E.A. Optimized activity ratio for different types of reagent attachment at sulfide minerals. J. Min. Sci. 2015. Vol. 51. No. 5. P. 1021—1028.

14. Post-release of the conference «Flotation reagents 2017». URL: https://chem.ru/nauka-i-tehnologiya/425-post-reliz-konferencii-flotacionnye-reagenty-2017.html (accessed: 10.01.2021) (In Russ.).

15. Usmanova N.F., Markosyan S.M., Timoshenko L.I., Pa-syuga D.V. The use of a humate reagent as a depressant in the flotation of copper-nickel ores. In: Problems and prospects of effective processing of mineral raw materials in the 21st century (Plaksin Readings-2019): Proc. Intern. conf. (Irkutsk, 9—14 Sept. 2019). Irkutsk: Reprocentr A1, 2019. P. 164—166 (In Russ.).

16. Kostovic M., Lazic P., Vucinic D., Deusic S., Tomanec R. Factorial design of selective flotation of chalcopyrite from copper sulfides. J. Min. Sci. 2015. Vol. 51. No. 2. P. 380—388.

17. Zanin M., Lambertc H., Du Plessisc C.A. Lime use and functionality in sulphide mineral flotation: A review. Miner. Eng. 2019. No. 143. P. 1—14.

18. Kienko L.A., Voronova O.V. Selective flotation of fineingrained carbonate-fluorite ore in pulp of increased dispersion uniformity. J. Min. Sci. 2014. Vol. 50. No. 1. P. 176—181.

19. World's largest flotation machines increase copper and molybdenum recovery in Mexico. OUTOTEC. URL: https://www.outotec.ru/products-and-services/newsletters/minerva/minerva-vypusk-1-2019/samye-bolshie-flotomashiny-v-mire-pozvolili-uvelichit-izvlechenie-medi-i-molibdena-v-meksike-/ (accessed: 10.01.2020) (In Russ.).

20. Column flotation machines — maximize extraction from fine minerals. OUTOTEC. URL: https://www. outotec.ru/products-and-services/newsletters/minerva/minerva-3-2017/flotation-columns-getting-the-most-from-fine-ores/ (accessed: 09.01.2020) (In Russ.).

21. Nikolaeva N.V., Romashev A.O., Aleksandrova T.N., Fa-dina A.V. Intensification of technologies for weakening and disintegration of polydisperse mineral complexes of different genesis with using mills Isamill. Gornyi Infor-matsionno-Analiticheskii Bylleten'. 2013. No. 10. P. 97— 101 (In Russ.).

22. Increase flotation recovery. URL: https://www.isamill.com/ru/isamill-advantages/Pages/Improved-Flotation-Recovery.aspx (accessed: 10.01.2021) (In Russ.).

23. Bergerman M.G., De RennoMachado L.C., Kronember-ger V., Delboni Jr.H. Copper concentrate regrind at Sossego Plant using vertical mill—An evaluation on the first years of operation: Proc. XXVI Intern. Miner. Processing Congress (IMPC) (New Delhi, India, 24—28 Sept. 2012). Paper No. 298. P. 00432—00441.

24. New vertical mills are being commissioned at the TOF. NorilskNickel. URL: https://www.nornickel.ru/news-and-media/press-releases-and-news/na-tof-vvodyatsya-vekspluatatsiyu-novye-vertikalnye-melnitsy-/?dateStart=1467320400&dateEnd=1469998799&type=news (accessed: 09.01.2020) (In Russ.).

25. Kozhonov A.K., Molmakova M.S., Duishonbaev N.P. Identifying possible causes of problems in the dewatering of flotation products. Vestnik MGTU im. G.I. Nosova. 2018. Vol. 16. No. 3. P. 17—24 (In Russ.).

26. Denisov M.E., Rudnev B.P., Krylova L.N., Kuchmina Yu.S. Processing technology for Udokan copper ore with sulfuric-acid pre-leaching. Gornyi Informatsionno-Analiticheskii Bylleten'. 2015. No. 10. P. 100—104 (In Russ.).


Review

For citations:


Aleksandrova T.N., Orlova A.V., Taranov V.A. Current status in the copper ore processing (review). Izvestiya. Non-Ferrous Metallurgy. 2021;(3):4-14. (In Russ.) https://doi.org/10.17073/0021-3438-2021-3-4-14

Views: 1289


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)