Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Structure and mechanical properties of Al–Ca–Mn–Fe– Zr–Sc eutectic aluminum alloy after equal channel angular pressing

https://doi.org/10.17073/0021-3438-2021-2-56-65

Abstract

Multicomponent eutectic alloys developed in recent years based on the Al–Ca system have high practical application prospects due to their low density, high corrosion resistance, good processability when casting, and high formability in the as-annealed state. Alloy hardening is achieved by doping with Mn, Fe, Zr, Sc and other elements. Obtaining an ultrafine-grained state in aluminum alloys by the methods of severe plastic deformations, e.g. equal channel angular pressing (ECAP), significantly increases the complex of their mechanical properties. In this regard, the purpose this paper was aimed to study the effect of warm ECAP on the structure, mechanical properties and thermal stability of the eutectic aluminum alloy, wt.%: Al–3.5Ca–0.9Mn–0.5Fe–0.1Zr–0.1Sc. The ECAP process was carried out on as-cast alloy specimens with a diameter of 20 mm (temperature 400 °C, route BC, channel intersection angle 110°, number of passes N = 6). It is shown that as a result of ECAP, a developed substructure with high-density dislocations and released nanosized Al6(Mn, Fe), and Al3Sc particles is formed in the alloy, as well as primary coarse Al6(Mn, Fe) particles and eutectic Al4Ca particles are reduced in size. Such a change in the structure during ECAP leads to the significant hardening of the alloy: its strength properties increased by 1.5–2.0 times, and relative elongation decreased by 1.3 times in the longitudinal section sample and slightly changed in the «transverse» section sample as compared to the initial condition.

About the Authors

S. O. Rogachev
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Cand. Sci. (Eng.), Assistant prof., Department of physical metallurgy and physics of strength

119991, Moscow, Leninskii pr., 4 



E. A. Naumova
National University of Science and Technology (NUST) «MISIS»; MSUT «STANKIN»
Russian Federation

Cand. Sci. (Eng.), Lead expert, Department of metal forming; Associate prof., Department of composite materials

127055, Moscow, Vadkovskii per., 1 



R. D. Karelin
National University of Science and Technology (NUST) «MISIS»; Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences
Russian Federation

Junior researcher; Postgraduate student, Department of metal forming 

119334, Moscow, Leninskii pr., 49



V. A. Andreev
Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences; MATEK-SMA Ltd.
Russian Federation

Cand. Sci. (Eng.), General director, MATEK-SMA Ltd.; Senior researcher

117449, Moscow, Kar’yer str., 2a, bld 1-137



M. M. Perkas
Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences
Russian Federation

Senior researcher

Moscow



V. S. Yusupov
Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences
Russian Federation

Dr. Sci. (Eng.), Chief researcher 

Moscow



V. M. Khatkevich
National University of Science and Technology (NUST) «MISIS»; Scientific and technical center «TMK», Ltd
Russian Federation

Cand. Sci. (Eng.), Lead engineer, Research laboratory «Hybrid nanostructured materials»; Researcher

143026, Moscow, Skolkovo, Nobel str., 7 



References

1. Polmear I. Light alloys. From traditional alloys to nanocrystals. Oxford: Elsevier, 2017.

2. Kaufman J.G., Rooy E.L. Aluminum alloy castings: Properties, processes and applications. USA: ASM International. Materials Park, 2004.

3. Glazoff M., Zolotorevsky V., Belov N. Casting aluminum alloys. Oxford: Elsevier, 2007.

4. Nalivaiko A.Yu., Arnautova A.N., Zmanovsky S.V., Ozherelkov D.Yu., Shurkin P.K., Gromov A.A. Al—Al2O3 powder composites obtained by hydrothermal oxidation method: Powders and sintered samples characterization. J. Alloys Compd. 2020. Vol. 825. P. 154024. DOI: 10.1016/j.jallcom.2020.154024.

5. Swaminathan K., Padmanabhan K.A. Tensile flow and fracture behaviour of a superplastic Al—Ca—Zn alloy. J. Mater. Sci. 1990. Vol. 25. No. 11. P. 4579—4586. DOI: 10.1007/BF01129909.

6. Белов Н.А., Наумова Е.А., Илюхин В.Д., Дорошенко В.В. Структура и механические свойства отливок сплава Al—6%Ca—1%Fe, полученных литьем под давлением. Цветные металлы. 2017. No. 3. С. 69—75. DOI: 10.17580/tsm.2017.03.11. Belov N.A., Naumova E.A., Ilyukhin V.D., Doroshenko V.V. Structure and mechanical properties of Al—6%Ca—1%Fe alloy foundry goods, obtained by die casting. Tsvetnye Metally. 2017. No. 3. P. 69—75 (In Russ.).

7. Belov N.A., Naumova E.A., Akopyan T.K. Effect of calcium on structure, phase composition and hardening of Al— Zn—Mg alloys containing up to 12 wt.% Zn. Mater. Res. 2015. Vol. 18. No. 6. P. 1384—1391. DOI: 10.1590/1516- 1439.036415.

8. Belov N.A., Batyshev K.A., Doroshenko V.V. Microstructure and phase composition of the eutectic Al—Ca alloy, additionally alloyed with small additives of zirconium, scandium and manganese. Non-Ferr. Met. 2017. No. 2. P. 49—54. DOI: 10.17580/nfm.2017.02.09.

9. Belov N.A., Naumova E.A., Alabin A.N., Matveeva I.A. Effect of scandium on structure and hardening of Al—Ca eutectic alloys. J. Alloys Compd. 2015. Vol. 646. P. 741— 747. DOI: 10.1016/j.jallcom.2015.05.155.

10. Шуркин П.К., Долбачев А.П., Наумова Е.А., Дорошенко В.В. Влияние железа на структуру, упрочнение и физические свойства сплавов системы Al—Zn— Mg—Ca. Цветные металлы. 2018. No. 5. С. 69—76. DOI: 10.17580/tsm.2018.05.10. Shurkin P.K., Dolbachev A.P., Naumova E.A., Doroshenko V.V. Effect of iron on the structure, hardening and physical properties of the alloys of the Al—Zn—Mg— Ca system. Tsvetnye Metally. 2018. No. 5. P. 69—76 (In Russ.).

11. Pereira P.H.R., Huang Y., Langdon T.G. Examining the thermal stability of an Al—Mg—Sc alloy processed by high-pressure torsion. Mater. Res. 2017. Vol. 20. P. 39—45. DOI: 10.1590/1980-5373-MR-2017-0207.

12. Ghosh K.S., Gao N., Starink M.J. Characterisation of high pressure torsion processed 7150 Al—Zn—Mg—Cu alloy. Mater. Sci. Eng. A. 2012. Vol. 552. P. 164—171. DOI: 10.1016/j.msea.2012.05.026.

13. Lee H.-J., Han J.-K., Janakiraman S., Ahn B., Kawasakia M., Langdon T.G. Significance of grain refinement on microstructure and mechanical properties of an Al—3% Mg alloy processed by high-pressure torsion. J. Alloys Compd. 2016. Vol. 686. P. 998—1007. DOI: 10.1016/j.jallcom.2016.06.194.

14. Orlov D., Beygelzimer Y., Synkov S., Varyukhin V., Tsuji N., Horita Z. Plastic flow, structure and mechanical properties in pure Al deformed by twist extrusion. Mater. Sci. Eng. A. 2009. Vol. 519. P. 105—111. DOI: 10.1016/j.msea.2009.06.005.

15. Zha M., Li Y.-J., Mathiesen R., Bjørge R., Roven H.J. Microstructure, hardness evolution and thermal stability of binary Al—7Mg alloy processed by ECAP with intermediate annealing. Trans. Non-Ferr. Met. Soc. China. 2014. Vol. 24. P. 2301—2306. DOI: 10.3103/S1067821217020080.

16. Estrin J., Murashkin M., Valiev R. Ultrafine-grained aluminium alloys: processes, structural features and properties. In: Fundamentals of aluminium metallurgy. UK: Woodhead Publ., 2011. P. 468—503. DOI: 10.1533/9780857090256.2.468.

17. Shaeri M.H., Shaeri M., Ebrahimi M., Salehi M.T., Seyyedein S.H. Effect of ECAP temperature on microstructure and mechanical properties of Al—Zn—Mg—Cu alloy. Prog. Nat. Sci.: Mater. Int. 2016. Vol. 26. P. 182—191. DOI: 10.1016/j.pnsc.2016.03.003.

18. Клевцов Г.В., Валиев Р.З., Кушнаренко В.М., Клевцова Н.А., Мерсон Е.Д., Пигалева И.Н. Исследование скорости и особенностей коррозии образцов из наноструктурированного алюминиевого сплава в сероводородсодержащей среде. Известия вузов. Цветная металлургия. 2017. No. 1. С. 76—83. DOI: 10.17073/0021-3438-2017-1-76-83. Klevtsov G.V., Valiev R.Z., Kushnarenko V.M., Klevtsova N.A., Merson E.D., Pigaleva I.N. Investigation into the corrosion rate and features of the samples made of nanostructured aluminum alloy in the H2S-containing medium. Russ. J. Non-Ferr. Met. 2017. Vol. 58. No. 2. P. 142—148. DOI: 10.3103/S1067821217020080.

19. Никулин С.А., Добаткин С.В., Ханжин В.Г., Рогачев С.О., Чакушин С.А. Влияние субмикрокристаллической структуры и включений на деформацию и разрушение алюминиевых сплавов и титана. Металловедение и термическая обработка металлов. 2009. No. 5. С. 8—18. Nikulin S.A., Dobatkin S.V., Khanzhin V.G., Rogachev S.O., Chakushin S.A. Effect of submicrocrystalline structure and inclusions on the deformation and failure of aluminum alloys and titanium. Met. Sci. Heat Treat. 2009. Vol. 51. P. 208—217. DOI: 10.1007/s11041-009-9153-5.

20. Horita Z., Fujinami T., Nemoto M., Langdon T.G. Equalchannel angular pressing of commercial aluminum alloys: Grain refinement, thermal stability and tensile properties. Metall. Mater. Trans. A. 2000. Vol. 31. P. 691— 701. DOI: 10.1007/s11661-000-0011-8.

21. Raab G.J., Valiev R.Z., Lowe T.C., Zhu Y.T. Continuous processing of ultrafine grained Al by ECAP-Conform. Mater. Sci. Eng. A. 2004. Vol. 382. P. 30—34. DOI: 10.1016/j.msea.2004.04.021.

22. Angella G., Bassani P., Tuissi A., Ripamonti D., Vedani M. Microstructure evolution and aging kinetics of Al—Mg—Si and Al—Mg—Si—Sc alloys processed by ECAP. Mater. Sci. Forum. 2006. Vol. 503-504. P. 493—498. DOI: 10.4028/www.scientific.net/MSF.503-504.493.

23. Наумова Е.А., Белов Н.А., Дорошенко В.В. Исследование технологических свойств эвтектических сплавов системы Al—Ca—Mn—Fe—Si—Zr, упрочняемых без закалки. В сб.: Современные достижения в области металловедения, технологий литья, деформации, термической обработки и антикоррозионной защиты легких сплавов: Матер. Всерос. науч.-техн. конф. (г. Москва, 12 окт. 2017 г.). М.: ВИАМ, 2017. С. 209—220. Naumova E.A., Belov N.A., Doroshenko V.V. Investigation of the technological properties of eutectic Al—Ca—Mn— Fe—Si—Zr alloys, hardened without quenching. In: Modern achievements in the field of metal science, casting technologies, deformation, heat treatment and anti-corrosion protection of light alloys: Mater. of the All-Russ. Sci. Tech. Conf. (Moscow, Oct. 2017). Moscow: VIAM, 2017. P. 209—220 (In Russ.).

24. Никулин С.А., Рогачев С.О., Рожнов А.Б., Ли Э.В., Ли А.В. Применение микрообразцов для оценки механических свойств циркониевых сплавов после высокотемпературного окисления. В сб.: Прочность неоднородных структур — ПРОСТ-2016: Матер. VIII Евраз. науч.-практ. конф. М.: НИТУ «МИСиС», 2016. С. 200. Nikulin S.A., Rogachev S.O., Rozhnov A.B., Li E.V., Li A.V. Application of micro-samples to evaluate the mechanical properties of zirconium alloys after high-temperature oxidation. In: Strength of heterogeneous structures — PROST-2016: Mater. VIII Eurasian scientific-practical conference. Moscow: NUST «MISIS», 2016, P. 200 (In Russ.).


Review

For citations:


Rogachev S.O., Naumova E.A., Karelin R.D., Andreev V.A., Perkas M.M., Yusupov V.S., Khatkevich V.M. Structure and mechanical properties of Al–Ca–Mn–Fe– Zr–Sc eutectic aluminum alloy after equal channel angular pressing. Izvestiya. Non-Ferrous Metallurgy. 2021;27(2):56-65. (In Russ.) https://doi.org/10.17073/0021-3438-2021-2-56-65

Views: 658


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)