Influence of melt superheating treatment on cast structure of Al–Sn alloys
https://doi.org/10.17073/0021-3438-2021-2-40-48
Abstract
The study covers the effect of Melt Superheating Treatment (MST) for Al–Sn alloys. To determine the optimal superheating temperature, the authors measured the temperature dependences of the kinematic viscosity, electrical resistivity, density and surface tension of Al–Sn melts with tin contents of 10, 20, 30, 40, and 50 wt.%. According to the measurement results, the temperature t* was determined for each Al–Sn alloy sample. Heating to this temperature breaks down the micro-inhomogeneous state and leads to the heterogeneous liquid – homogeneous liquid structural transition. Melt superheating (MST) results in a decrease in melt viscosity. It was found that the temperature t* rises with increasing tin concentration in the Al–Sn melt. An increase in the tin content in the Al–Sn melt also leads to a decrease in the absolute values of kinematic viscosity and surface tension, while the electrical resistivity and density increase accordingly. Thus, the Melt Superheating Treatment (MST) mode for Al–Sn alloys was determined. The effect of MST of Al–50wt.%Sn melt on the microstructure and mechanical properties of the ingot was studied in order to determine the structural sensitivity to the degree of melt overheating, and to find a new strategy to improve the shaping ability of the Al–Sn alloy two-phase structure. The results demonstrated that the method of resistivity and viscosity determination are more sensitive and effective for melt superheating temperature (MST mode) evaluation. In addition, the desired modified Al–Sn ingot structure can be formed under normal casting conditions; MST can contribute to the modified ingot structure formation by increasing the solidification time and decreasing the average solidification rate by reducing melt viscosity after superheating.
About the Authors
O. A. ChikovaRussian Federation
Dr. Sci. (Phys.-Math.), Professor of the Department of physics, Institute of fundamental education; Chief researcher of the REC of Innovation Activity
620002, Еkaterinburg, Mira str., 19
620091, Еkaterinburg, Kosmonavtov ave., 26
V. V. Vyukhin
Russian Federation
Senior researcher of the Research center for the physics of metallic liquids
Еkaterinburg
V. S. Tsepelev
Russian Federation
Dr. Sci. (Eng.), Prof., Research center for the physics of metallic liquids
Еkaterinburg
References
1. Jia P., Zhang J.Y., Geng H.R., Yang Z.X., Teng X.Y., Zhao D.G., Wan Y., Zuo M., Sun N.Q. Effect of melt superheating treatment on solidification structures of Al75Bi9Sn16 immiscible alloy. J. Mol. Liq. 2017. Vol. 232. P. 457—461.
2. Piątkowski J. The effect of Al—17wt.%Si alloy melt overheating on solidification process and microstructure evolution. Solid State Phenom. 2011. Vol. 176. P. 29—34.
3. Eskin D.G. Primary solidification in aluminum alloys under melt overheating. Mater. Sci. Forum. 2000. Vol. 331. P. 155—160.
4. Yin F.S., Sun X.F., Li J.G, Guan H.R., Hu Z.Q. Effects of melt treatment on the cast structure of M963 superalloy. Scripta. Mater. 2003. Vol. 48. P. 425—429.
5. Novák L., Potocký L., Lovas A., Kisdi-Koszó É., Takács J. Influence of the melt overheating and the cooling rate on the magnetic properties of Fe83.4B16.6 amorphous alloys. J. Magn. Mater. 1980. Vol. 19. P. 149—151.
6. Баум Б.А., Тягунов Г.В., Попель П.С., Хасин Г.А., Коваленко Л.В. Повышение технологических свойств металлопродукции путем термовременной обработки расплава. Сталь. 1987. No. 10. С. 21—24. Baum B.A., Tyagunov G.V., Popel P.S., Khasin G.A., Kovalenko L.V. Improving the technological properties of metal products by thermal treatment of the melt. Steel. 1987. No. 10. P. 21— 24 (In Russ.).
7. Jie Z.Q., Zhang J., Huang T.W., Liu L., Zu H.Z. The influence of melt superheating treatment on the cast structure and stress rupture property of IN718C superalloy. J. Alloys Compd. 2017. Vol. 706. P. 76—81.
8. Su H., Wang H., Zhang J. H., Guo M., Liu L., Fu H. Influence of melt superheating treatment on solidification characteristics and rupture life of a third-generation Ni-based single-crystal superalloy. Metal. Mater. Trans. B. 2018. Vol. 49. P. 1537—1546.
9. Sabzi M., Far S.M., Dezfuli S.M. Effect of melting temperature on microstructural evolutions, behavior and corrosion morphology of Hadfield austenitic manganese steel in the casting process. Inter. J. Miner., Metal. Mater. 2018. Vol. 25. P. 1431—1438.
10. Zu F.-Q. Temperature-induced liquid-liquid transition in metallic melts: a brief review on the new physical phenomenon. Metals. 2015. Vol. 5. P. 395—417.
11. Lan S., Blodgett M., Kelton K.F., Ma J.L., Fan J., Wang X.-L. Structural crossover in a supercooled metallic liquid and the link to a liquid-to-liquid phase transition. Appl. Phys. Lett. 2016. Vol. 108. No. 21. P. 211907.
12. Tournier R.F. Glass phase and other multiple liquid-toliquid transitions resulting from two-liquid phase competition. Chem. Phys. Lett. 2016. Vol. 665. P. 64—70.
13. Чикова О.А. О структурных переходах в сложнолегированных расплавах. Известия высших учебных заведений. Черная металлургия. 2020. Т. 63. No. 3-4. С. 261—270. Chikova O.A. On structural transitions in complexalloyed melts. Izvestiya vysshih uchebnyh zavedenij. Chernaya metallurgiya. 2020. Vol. 63. No. 3-4. P. 261—270 (In Russ.).
14. Dahlborg U., Calvo-Dahlborg M., Eskin D.G., Popel P.S. Thermal melt processing of metallic alloys. Springer. Ser. Mater. Sci. 2018. Vol. 273. P. 277—315.
15. Алюминиевые сплавы антифрикционного назначения: Монография. Под ред. Миронова А.Е., Белова Н.А., Столяровой О.О. М.: Изд. дом «МИСиС», 2016. Mironov A.E., Belov N.A., Stolyarova O.O. (Eds.). Aluminum alloys of antifriction purpose: Monograph. Moscow: MISIS, 2016 (In Russ.).
16. Lu Z.C., Gao Y., Zeng M.Q., Zhu M. Improving wear performance of dual-scale Al—Sn alloys: The role of Mg addition in enhancing Sn distribution and tribolayer stability. Wear. 2014. Vol. 309. P. 216—225.
17. Bertelli F., Brito C., Ferreira I.L., Reinhart G., NguyenThi H., Mangelinck-Noel N., Cheung N., Garcia A. Cooling thermal parameters, microstructure, segregation and hardness in directionally solidified Al—Sn—(Si,Cu) alloys. Mater. Design. 2015. Vol. 72. P. 31—42.
18. Мокеева Л.В., Попель П.С., Коржавина (Чикова) О.А., Трубин Л.Н., Петрушевский М.С., Замятин В.М., Топчий А.Л., Савельев В.В., Бондарева Е.В. Влияние температурной обработки расплава Al—Sn на структуру и свойства литого металла. Технология легких сплавов. 1989. No. 4. С. 87—91. Mokeeva L.V., Popel P.S., Korzhavina (Chikova) O.A., Trubin L.N., Petrushevsky M.S., Zamyatin V.M., Topchiy A.L., Saveliev V.V., Bondareva E.V. Influence of temperature treatment of the Al—Sn melt on the structure and properties of cast metal. Tekhnologiya legkikh splavov. 1989. No. 4. P. 87—91 (In Russ.).
19. Чикова О.А., Шишкина Е.В., Константинов А.Н. Измерение методом наноиндентирования модуля Юнга и твердости фаз сплава Al—50мас.%Sn. Физика металлов и металловедение. 2013. Т. 114. No. 7. С. 670—677. Chikova O.A., Shishkina E.V., Konstantinov A.N. Measurement of Young’s modulus and hardness of Al— 50wt.%Sn alloy phases using nanoindentation. Phys. Met. Metallograph. 2013. Vol. 114. No. 7. P. 616—622.
20. Чикова О.А., Константинов А.Н., Шишкина Е.В., Чезганов Д.С. Влияние микрогетерогенности и условий кристаллизации расплава Al—50%Sn на механические свойства фазовых составляющих слитка. Известия вузов. Цветная металлургия. 2014. No. 5. С. 3—7. Chikova O.A., Shishkina E.V., Chezganov D.S., Konstantinov A.N. Influence of the microheterogeneity and crystallization conditions of the Al—50%Sn alloy on the mechanical properties of phase components of the ingot Russ. J. Non-Ferr. Met. 2014. Vol. 55. No. 6. P. 505— 508.
21. Zhu P., Lai J., Shen J., Wu K., Zhang L., Liu J. An oscillating cup viscometer based on Shvidkovskiy algorithm for molten metals. Journal of the International Measurement Confederation. 2018. Vol. 122. P. 149— 154.
22. Brooks R.F., Dinsdale A.T., Quested P.N. The measurement of viscosity of alloys — A review of methods, data and models. Measurement Sci. Technol. 2005. Vol. 16. P. 354—362.
23. Бельтюков А.Л., Ладьянов В.И. Автоматизированная установка для определения кинематической вязкости металлических расплавов. Приборы и техника эксперимента. 2008. No. 2. С. 155—161. Beltyukov A.L., Ladyanov V.I. An automated setup for determining the kinematic viscosity of metal melts. Instruments and Experimental Techniques. 2008. Vol. 51. No. 2. P. 304—310.
24. Рябина A.B., Кононенко В.И., Ражабов A.A. Безэлектродный метод измерения электросопротивления металлов в твердом и жидком состояниях и установка для его реализации. Расплавы. 2009. No. 1. C. 34—42. Ryabina A.B., Kononenko V.I., Razhabov A.A. Electrodeless method for electrical resistivity of metals in solid and liquid states and an installation for its implementation. Rasplavy. 2009. No. 1. P. 34—42 (In Russ.).
25. Иващенко Ю.Н., Хиля Г.П. Установка для измерения свободной поверхностной энергии, контактного угла и плотности расплавов методом лежащей капли. Приборы и техника эксперимента.1972. No. 6. C. 208—211. Ivashchenko Yu.N., Khilya G.P. Installation for measuring the free surface energy, contact angle and density of melts by the sessile drop method. Pribory i tekhnika eksperimenta. 1972. No. 6. P. 208—211 (In Russ.).
26. Директор Л.Б., Зайченко В.М., Майков И.Л. Усовершенствованный метод лежащей капли для определения поверхностного натяжения жидкостей. Теплофизика высоких температур. 2010. Т. 48. No. 2. C. 193—197. Direktor L.B., Zaichenko V.M., Maikov I.L. An improved method of sessile drop for determining the surface tension of liquids. High Temp. 2010. Vol. 48. No. 2. P. 176—180.
27. Попель П.С., Коржавина (Чикова) О.А. Область существования метастабильной микрогетерогенности в расплавах Al—Sn. Журн. физ. химии. 1989. Т. 63. No. 3. С. 838—841. Popel P.S., Korzhavina (Chikova) O.A. Region of existence of metastable microheterogeneity in Al—Sn melts. Zhurnal fizicheskoi khimii. 1989. Vol. 63. No. 3. P. 838— 841 (In Russ.).
28. Транспортные свойства металлических и шлаковых расплавов: Справочник. Под ред. акад. Н.А. Ватолина. М.: Металлургия, 1995. Vatolin N.A. (Ed.). Transport properties of metal and slag melts: Reference. Moscow: Metallurgiya, 1995 (In Russ.).
29. Еременко В.Н., Иванов М.И., Лукашенко Г.М., Марценюк П.С., Ниженко В.И., Хиля Г.П. Физическая химия неорганических материалов: Т. 2. Поверхностное натяжение и термодинамика металлических расплавов. Под общ. ред. Еременко В.Н. Киев: Наук. думка, 1988. Eremenko V.N., Ivanov M.I., Lukashenko G.M. Martsenyuk P.S., Nizhenko V.I., Khilya G.P. Physical chemistry of inorganic materials. Vol. 2. Surface tension and thermodynamics of metal melts. Kiev: Naukova Dumka, 1988 (In Russ.).
30. Диаграммы состояния двойных металлических систем: Справочник. Т. 1. Под общ. ред. Лякишева Н.П. М.: Машиностроение, 1996. Lyakishev N.P. (Ed.). Phase diagrams of binary metal systems: A handbook. Vol. 1. Moscow: Mashinostroenie, 1996 (In Russ.).
Review
For citations:
Chikova O.A., Vyukhin V.V., Tsepelev V.S. Influence of melt superheating treatment on cast structure of Al–Sn alloys. Izvestiya. Non-Ferrous Metallurgy. 2021;27(2):40-48. (In Russ.) https://doi.org/10.17073/0021-3438-2021-2-40-48