Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Effect of cooling rate on C92900 bronze microstructure and properties

https://doi.org/10.17073/0021-3438-2022-1-25-39

Abstract

In the mechanical engineering, antifriction tin bronzes are used for the manufacture of friction parts. For example, the C92900 bronze has found use in aircraft braking system components. One of the ways to improve the properties of leaded tin bronzes is to increase the cooling rate during solidification. This paper studies the effect of the cooling rate and changes in the content of alloying elements within the limits established by the C92900 bronze industry standard OST 1 90054-72. In order to provide different cooling rates, the prepared alloys were casted into molds made of resin-bonded sand, steel and graphite with cooling rates 0.4, 5.0, and 14.6 °C/s, respectively. The influence of the cooling rate and the bronze composition on the freezing range, macrostructure, microstructure, thermal conductivity, mechanical, and tribological properties were investigated. Differential thermal analysis demonstrated that the upper-limit alloying of C92900 bronze leads to a decrease of the solidus temperature by 40 °C, which should be considered during deformation processing and heat treatment. An increase in the cooling rate during C92900 bronze ingot solidification provides a significant grain refinement and changes the amount, size and morphology of phases. For example, in case of metallic and graphite mold casting, the size of lead particles decreases, and its circularity increases. The change in the Sn content within the range established by the industrial standard has a significant effect on the γ-(Cu,Ni)3Sn intermetallic phase fraction. The increase in the cooling rate has no significant effect on the C92900 bronze thermal conductivity but increases hardness by 30 HB as well as cooling rate and yield strength and ultimate tensile strength. Wear tests carried out in accordance with the «shaft – partial insert» scheme in a kerosene medium using a steel counterbody showed that an increase in the cooling rate during solidification leads to an increase in the bronze wear rate from ~0.4·10–8 to ~1.2·10–8. The change in the bronze composition within the industrial standard range has practically no effect on the wear rate but leads to a slight increase of the coefficient of friction.

About the Authors

V. E. Bazhenov
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Cand. Sci. (Eng.), Assistant prof., Department of foundry technologies and material art working (FT&MAW)

119991, Moscow, Leninskii pr., 4 



A. Yu. Titov
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Cand. Sci. (Eng.), Assistant lecturer, Department of FT&MAW 

Moscow



I. V. Shkalei
Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences (IPMech RAS)
Russian Federation

Engineer, Tribology laboratory

119526, Moscow, Vernadskogo pr., 101-1 



A. V. Sannikov
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Cand. Sci. (Eng.), Head of section, Casting technology and material engineering center 

Moscow



A. A. Nikitina
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Laboratory assistant, Department of FT&MAW 

Moscow



I. V. Plisetskaya
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Cand. Sci. (Eng.), Assistant lecturer, Department of FT&MAW 

Moscow



A. I. Bazlov
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Cand. Sci. (Eng.), Engineer, Advanced energy efficient materials laboratory 

Moscow



A. M. Mezrin
Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences (IPMech RAS)
Russian Federation

Cand. Sci. (Phys.-Math.), Researcher, Tribology laboratory 

Moscow



A. V. Koltygin
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Cand. Sci. (Eng.), Assistant prof., Department of FT&MAW 

Moscow



References

1. Груздева И.А., Сулицын А.В., Мысик Р.К., Сокунов Б.А. Влияние электромагнитного перемешивания на структуру и свойства оловянных бронз. Литейщик России. 2006. No. 11. С. 27—29. Gruzdeva I.A., Sulitsyn A.V., Mysik R.K., Sokunov B.A. The effect of electromagnetic stirring on the structure and properties of tin bronzes. Liteishchik Rossii. 2006. No. 11. Р. 27—29 (In Russ.).

2. Song K., Zhou Y., Zhao P., Zhang Y., Bai N. Cu—10Sn— 4Ni—3Pb alloy prepared by crystallization under pressure: An experimental study. Acta Metall. Sin. 2013. Vol. 26. P. 199—205.

3. Белов В.Д., Герасименко Е.А., Гусева В.В., Коновалов А.Н. Влияние условий затвердевания заготовок из оловянистой бронзы БрО10С2Н3 на ее структуру. Литейное производство. 2016. No. 2. С. 26—33. Belov V.D., Gerasimenko E.A., Guseva V.V., Konovalov A.N. Influence of solidification conditions of tin bronze BrO10S2N3 parts on its structure. Liteinoe proizvodstvo. 2006. No. 2. Р. 26—33 (In Russ.).

4. Ozerdem M.S., Kolukisa S. Artificial neural network approach to predict the mechanical properties of Cu— Sn—Pb—Zn—Ni cast alloys. Mater. Design. 2009. Vol. 30. P. 764—769.

5. Бронтвайн Л.Р. Исследование механических свойств бронзы в зависимости от способа литья. Литейное производство. 1966. No. 12. С. 31. Brontvain L.R. Investigation of the mechanical properties of bronze depending on the casting method. Liteinoe proizvodstvo. 1966. No. 12. Р. 31 (In Russ.).

6. Nyyssцnen T. Leaded tin bronzes: The effects of casting method on dry sliding behavior. Tribologia — Finnish Journal of Tribology. 2012. Vol. 31. P. 4—11.

7. Chen X., Wang Z., Ding D., Tang H., Qiu L., Luo X., Shi G. Strengthening and toughening strategies for tin bronze alloy through fabricating in-situ nanostructured grains. Mater. Design. 2015. Vol. 66. P. 60—66.

8. Prasad B.K., Patwardhan A.K., Yegneswaran A.H. Factors controlling dry sliding wear behaviour of a leaded tin bronze. Mater. Sci. Technol. 1996. Vol. 12. P. 427— 435.

9. Prasad B.K. Sliding wear behaviour of bronzes under varying material composition, microstructure and test conditions. Wear. 2004. Vol. 257. P. 110—123.

10. Equey S., Houriet A., Mischler S. Wear and frictional mechanisms of copper-based bearing alloys. Wear. 2011. Vol. 273. P. 9—16.

11. Aksoy M., Kuzucu V., Turhan H. A note on the effect of phosphorus on the microstructure and mechanical properties of leaded-tin bronze. J. Mater. Process. Technol. 2002. Vol. 124. P. 113—119.

12. Белоусов А.А., Пастухов Э.А., Ченцов В.П. Влияние растворенного никеля и температуры на кинетику окисления свинцовистых безоловянных бронз. Расплавы. 2005. No. 2. С. 8—10. Belousov A.A., Pastukhov E.A., Chentsov V.P. Influence of dissolved nickel and temperature on the oxidation kinetics of lead tin free bronzes. Rasplavy. 2005. No. 2. Р. 8—10 (In Russ.).

13. Рыжиков А.А., Тимофеев Г.И., Лебедев П.В. Особенности затвердевания отливок из оловянистой бронзы. Литейное производство. 1968. No. 9. С. 23—25. Ryzhikov A.A., Timofeev G.I., Lebedev P.V. Features of tin bronze castings solidification. Liteinoe proizvodstvo. 1968. No. 9. Р. 23—25 (In Russ.).

14. Вершинин П.И., Севастьянов В.И., Бакрин Ю.Н. Влияние интенсификации охлаждения на структуру и свойства отливок из оловянной бронзы. Литейное производство. 1986. No. 5. С. 8—9. Vershinin P.I., Sevast’yanov V.I., Bakrin Yu.N. Effect of cooling intensification on the structure and properties of tin bronze castings. Liteinoe proizvodstvo. 1986. No. 5. Р. 8—9 (In Russ.).

15. Семёнов К.Г., Колосков В.Ф., Чурсин В.М. Разработка технологии производства качественных отливок из чушковых оловянных бронз. Литейное производство. 1994. No. 7. С. 10—12. Semenov K.G., Koloskov V.F., Chursin V.M. Development of the production technology of high-quality castings from tin bronze ingots. Liteinoe proizvodstvo. 1994. No. 7. Р. 10—12 (In Russ.).

16. Бронтвайн Л.Р., Городецкий В.Н. Герметичность литейных медных сплавов. Литейное производство. 1985. No. 10. С. 14—16. Brontvain L.R., Gorodetskii V.N. Soundness of casting copper alloys. Liteinoe proizvodstvo. 1985. No. 10. Р. 14— 16 (In Russ.).

17. Фетисов Н.М., Рюмшин Н.А., Супоницкий В.М., Литовченко В.И., Репина Н.И., Рудницкая В.Л., Белозёров В.Ф. Влияние теплоаккумулирующей способности формы на структуру и свойства отливок из бронзы БрОЦС 4-4-17. Литейное производство. 1973. No. 9. С. 24—26. Fetisov N.M., Ryumshin N.A., Suponitskii V.M., Litovchenko V.I., Repina N.I., Rudnitskaya V.L., Belozerov V.F. Influence of mold heat capacity on the structure and properties of BrOCS 4-4-17 bronze castings. Liteinoe proizvodstvo. 1973. No. 9. Р. 24—26 (In Russ.).

18. Ruusila V., Nyyssonen T., Kallio M., Vuorinen P., Lehtovaara A., Valtonen K., Kuokkala V.-T. The effect of microstructure and lead content on the tribological properties of bearing alloys. In: Proc. Institution of Mechanical Engineers, Pt. J: Journal of Engineering Tribology. 2013. Vol. 227. P. 878—887.

19. Бронтвайн Л.Р., Горовецкий В.Н. Исследование износостойкости сплавов на медной основе. Литейное производство. 1981. No. 10. С. 8—9. Brontvain L.R., Gorovetskii V.N. Study of wear resistance of copper-based alloys. Liteinoe proizvodstvo. 1981. No. 10. Р. 8—9 (In Russ.).

20. Мартюшев Н.В., Плотникова Н.В., Скиба В.Ю., Попелюх А.И., Семенков И.В. Влияние скорости охлаждения бронзы БрОС10-10 на структуру, фазовый со став и циклическую долговечность отливок. Обработка металлов. 2012. No. 3. С. 67—70. Martyushev N.V., Plotnikova N.V., Skiba V.Yu., Popelyukh A.I., Semenkov I.V. Influence of the BrOS10-10 bronze cooling rate on the structure, phase composition and cyclic durability of castings. Obrabotka metallov. 2012. No. 3. Р. 67—70 (In Russ.).

21. Мартюшев Н.В., Семенков И.В. Структура и свойства бронзовых отливок при различных скоростях охлаждения. Современные проблемы науки и образования. 2012. No. 6. С. 1—6. Martyushev N.V., Semenkov I.V. Structure and properties of bronze castings at different cooling rates. Sovremennye problemy nauki i obrazovaniya. 2012. No. 6. Р. 1—6 (In Russ.).

22. Martyushev N., Semenkov I.V., Petrenko Y.N. Structure and properties of leaded tin bronze under different crystallization conditions. Adv. Mater. Res. 2013. Vol. 872. P. 89—93.

23. Мартюшев Н.В. Влияние морфологии включений легкоплавкой фазы на триботехнические свойства бронз. Приволжский научный вестник. 2011. No. 2. С. 8—11. Martyushev N.V. Influence of the low-melting phase inclusions morphology on the tribotechnical properties of bronzes. Privolzhskii nauchnyi vestnik. 2011. No. 2. Р. 8— 11 (In Russ.).

24. Yan P., Wang D., Yan B., Mo F. Effect of size refinement and distribution of the lubricating lead phases in the spray forming high-leaded tin bronze on wear rates. Mod. Phys. Lett. B. 2013. Vol. 27. P. 1341019.

25. Image processing and analysis in Java. URL: https:// imagej.nih.gov/ij/docs/menus/analyze.html (accessed: 19.02.2020).

26. Zheng X., Cahill D., Krasnochtchekov P., Averback R., Zhao J. High-throughput thermal conductivity measurements of nickel solid solutions and the applicability of the Wiedemann—Franz law. Acta Mater. 2007. Vol. 55. P. 5177—5185.

27. Andersson J.O., Helander T., Hцglund L., Shi P.F., Sundman B. Thermo-Calc and DICTRA, Computational tools for materials science. CALPHAD. 2002. Vol. 26. P. 273—312.

28. Thermo-Calc Software TCBIN Binary alloys database (accessed: 01.01.2020).

29. Park J.S., Park C.W., Lee K.J. Implication of peritectic composition in historical high-tin bronze metallurgy. Mater. Character. 2009. Vol. 60. P. 1268—1275.

30. Guo Z., Jie J., Liu S., Liu J., Yue S., Zhang Y., Li T. Solidification characteristics and segregation behavior of Cu—15Ni—8Sn alloy. Metall. Mat. Trans. A. 2020. Vol. 51. P. 1229—1241.

31. Turhan H., Aksoy M., Kuzucu V., Yildirim M.M. The effect of manganese on the microstructure and mechanical properties of leaded-tin bronze. J. Mater. Process. Technol. 2001. Vol. 114. P. 207—211.

32. Mey S. Thermodynamic re-evaluation of the Cu—Ni system. CALPHAD. 1992. Vol. 16. P. 255—260.

33. Scheil E. Bemerkungen zur Schichtkristallbildung. Zeit. Metallkunde. 1942. Bd. 34. S. 70—72.

34. Alpas A.T., Zhang J. Effect of microstructure (particulate size and volume fraction) and counterface material on the sliding wear resistance of particulate-reinforced aluminum matrix composites. Metal. Mater. Trans. A. 1994. Vol. 25. P. 969—983.

35. Андрусенко О.Е., Матвеев Ю.И. Требование к материалам антифрикционного слоя, используемым при восстановлении подшипников скольжения коленчатых валов. Вестник АГТУ. Сер. Морская техника и технология. 2009. No. 1. С. 50—55. Andrusenko O.E., Matveev Yu.I. Requirement for the materials of the anti-friction layer used in the restoration of plain bearings of crankshafts. Vestnik AGTU. Ser. Morskaya tekhnika i tekhnologiya. 2009. No. 1. Р. 50—55 (In Russ.).

36. Куликова Т.В., Быков В.А., Шуняев К.Ю., Ягодин Д.А., Петрова С.А., Захаров Р.Г. Исследование термодинамических и теплофизических свойств интерметаллида Cu3Sn. Бутлеровские сообщения. 2011. Т. 27. No. 16. С. 72—78. Kulikova T.V., Bykov V.A., Shunyaev K.Yu., Yagodin D.A., Petrova S.A., Zakharov R.G. Investigation of the thermodynamic and thermophysical properties of the Cu3Sn intermetallic compound. Butlerovskie soobshcheniya. 2011. Vol. 27. No. 16. Р. 72—78 (In Russ.).


Review

For citations:


Bazhenov V.E., Titov A.Yu., Shkalei I.V., Sannikov A.V., Nikitina A.A., Plisetskaya I.V., Bazlov A.I., Mezrin A.M., Koltygin A.V. Effect of cooling rate on C92900 bronze microstructure and properties. Izvestiya. Non-Ferrous Metallurgy. 2021;27(2):25-39. (In Russ.) https://doi.org/10.17073/0021-3438-2022-1-25-39

Views: 958


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)