Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Technology development for obtaining titaniumcontaining bar ligature for aluminum alloy modification

https://doi.org/10.17073/0021-3438-2021-2-14-24

Abstract

The paper provides the results of experimental studies on the development of a method for obtaining titanium-containing bar ligature, the study of its structure and modifying ability. The distinctive features of the new technology are the use of titanium sponge and/or titanium shavings as titanium raw materials, the primary alloying of aluminum with titanium, and then boron, titanium introduction in two stages: initially, 2/3 of titanium metal raw materials are dissolved in the aluminum melt, and the remaining amount is introduced after the potassium tetrafluoroborate reduction. Titanium sponge pre-impregnation with halide-containing flux and the use of a briquetted KBF4 + Al-powder mixture are also provided. The experimental technology for Al–Ti–B melt preparation is described, titanium and boron extraction into the ligature is calculated, ligature microstructure is investigated, and chemical and molecular compositions of resulting slags are determined. Deformation processing for bar ligature production was carried out by the method of direct extrolling that smoothed over cast structure defects. It was found that the use of high-speed crystallization-deformation in the combined direct extrolling process makes it possible to obtain alloying bars of a given diameter at minimal energy consumption with the required set of mechanical and operational properties. A quantitative modifying ability assessment of the experimental cast-iron ligature and the deformed cast-iron rod obtained by the direct extrolling method was carried out in comparison with the mass-produced cast-iron ligature produced by KBM Affilips (the Netherlands/Belgium). Based on theoretical and experimental studies, the composition and technology for producing Al–Ti–B modifying ligature using titanium sponge and/or shavings and potassium tetrafluoroborate containing 3.0±0.3 % titanium and 1.0±0.2 % boron as alloying additives have been developed that meet the aluminum ligature composition requirements.

About the Authors

B. P. Kulikov
Siberian Federal University (SibFU)
Russian Federation

Dr. Sci. (Chem.), Leading research scientist, Institute of non-ferrous metals and materials science

660025, Krasnoyarsk, pr. Krasnoyarskij rabochij, 95 



A. I. Bezrukikh
Siberian Federal University (SibFU)
Russian Federation

Cand. Sci. (Eng.), Associate prof., Department of foundry production 

Krasnoyarsk



S. B. Sidelnikov
Siberian Federal University (SibFU)
Russian Federation

Dr. Sci. (Eng.), Prof., Department of pressure metal processing 

Krasnoyarsk



D. N. Bondarenko
JSC «NPK»
Russian Federation

General director

121351, Moscow, Molodogvardejskaya str., 54-4 



V. N. Baranov
Siberian Federal University (SibFU)
Russian Federation

Cand. Sci. (Eng.), Director of the Institute of non-ferrous metals and materials science 

Krasnoyarsk



E. S. Lopatina
Siberian Federal University (SibFU)
Russian Federation

Cand. Sci. (Eng.), Associate prof., Department of metallurgy and heat treatment of metals 

Krasnoyarsk



A. A. Startsev
LLC «RUSAL ITC»
Russian Federation

Director of the Foundry department

660067, Krasnoyarsk, Pogranichnikov str., 37 



N. A. Stepanenko
Siberian Federal University (SibFU)
Russian Federation

Postgraduate student, Department of foundry production 

Krasnoyarsk



A. S. Nadolko
Siberian Federal University (SibFU)
Russian Federation

Assistant prof., Department of metallurgy and heat treatment of metals 

 Krasnoyarsk



References

1. Rosenhain W., Grogan J., Schofield T. Gas removal and grain refinement of aluminum alloys. Foundry Trade J. 1930. Vol. 43. Р. 177—180.

2. Sigworth G.K. The grain refining of aluminum and phase relationships in the Al—Ti—B system. Metal. Trans. A. 1984. Vol. 15(2). P. 277—282.

3. Sigworth G.K., Kuhn T.A. Grain refinement of aluminum casting alloys. Int. J. Metalcasting. 2007. Vol. 1(1). P. 31—40.

4. Напалков В.И., Бондарев Б.И., Тарарышкин В.Ч., Чухров М.В. Лигатуры для производства алюминиевых и магниевых сплавов. М.: Металлургия, 1983. Napalkov V. I., Bondarev B. I., Tararyshkin V. Ch., Chukhrov M. V. Ligatures for the production of aluminum and magnesium alloys. Moscow: Metallurgiya, 1983 (In Russ.).

5. Amulya B., Satyabrat D., Bharat B., Nedumbilly P. Effect of Al—5Ti—1B grain refiner on the microstructure, mechanical properties and acoustic emission characteristics of Al5052 aluminium alloy. J. Mater. Res. Technol. 2015. Vol. 4. P. 171—179.

6. Birol Y. An improved practice to manufacture Al—Ti— B master alloys by reacting halide salts with molten aluminium. J. Alloys Compd. 2006. Vol. 420. P. 71—76.

7. Quested T.E., Greer A.L., Cooper P.S. The variable potency of TiB2 nucleates particles in the grain refinement of aluminum by Al—Ti—B additions. Mater. Sci. Forum. 2002. Vol 396-402. P. 53—58.

8. Venkateswarlu K., Murty B.S., Chakraborty M. Effect of hot rolling and heat treatment of Al—5Ti—1B master alloy on the grain refining efficiency of aluminum. Mater. Sci. Eng. A. 2001. Vol. 301. P.180—186.

9. Quested T.E. Understanding the mechanisms of grain refinement by inoculation. Mater. Sci. Technol. 2004. Vol. 20. P. 1357—1369.

10. Wang X., Han Q. Grain refinement mechanism of aluminum by Ai—Ti—B. Master. Alloys. Light Metals. 2016. No. 1. P. 187—193.

11. Birol Y. Production of Al—Ti—B grain refining master alloys from Na2B4O7 and K2TiF6. J. Alloys Compd. 2007. Vol. 458(1-2). P. 271—276.

12. Shu D., Sun B.D., Mi J.W., Grant P.S. Refinement of TiB2 in Al—Ti—B grain refiner alloys by ultrasound and the effect on Al grain size. Mater. Sci. Forum. 2010. Vol. 654-656. P. 958—961.

13. Чеглаков В.В., Шпаков В.И., Мамина Л.И. Влияние условий приготовления лигатуры Al—Ti—B на степень перехода бора из его солей. Литейное производство. 2001. No. 1. С. 20—22. Cheglakov V.V., Shpakov V.I., Mamina L.I. Influence of Al—Ti—B ligature preparation conditions on the degree of boron transition from its salts. Litejnoe proizvodstvo. 2001. No. 1. P. 20—22 (In Russ.).

14. Костин И.В., Безруких А.И., Беляев С.В., Фролов В.Ф., Губанов И.Ю., Лесив Е.М., Степаненко Н.А. Исследование технологии модифицирования при литье плоских слитков 5ХХХ серии. Журн. СФУ. Химия. 2017. No. 1. С. 90—98. Kostin I.V., Bezrukikh A.I., Belyaev S.V., Frolov V.F., Gubanov I.Y., Lesiv E.M., Stepanenko N.A. Research of modification technology in the casting of flat ingots of the 5XX series. Zhurnal SibFU. Khimiya. 2017. No. 1. P. 90—98 (In Russ.).

15. Nikitin V.I., Wanqi J.I.E., Kandalova E.G., Makarenko A.G., Yonk L. Preparation of Al—Ti—B grain refiner by SHS technology. Scripta. Mater. 2000. Vol. 42. P. 561—566.

16. Dai W., Wang X., Zhao W., Han Q. A сomparison of the effects of Al—Ti—B type grain refiners from different makers on pure aluminum. Light Metals. 2014. No.1. P. 945—949.

17. Casari Daniele, Merlin Mattia, Garagnani G. A comparative study on the effects of three commercial Ti—Bbased grain refiners on the impact properties of A356 cast aluminium alloy. J. Mater. Sci. 2013. Vol. 48. P. 4365—4377.

18. Сидельников С.Б., Лопатина Е.С., Довженко Н.Н., Дроздова Т.Н., Беляев С.В., Баранов В.Н., Константинов И.Л., Сидельников А.С., Беспалов В.М. Особенности структурообразования и свойства металла при высокоскоростной кристаллизации—деформации и модифицировании алюминиевых сплавов. Красноярск: СФУ, 2015. Sidelnikov S.B., Lopatina E.S., Dovzhenko N.N., Drozdova T.N., Belyaev S.V., Baranov V.N., Konstantinov I.L., Sidelnikov A.S., Berspalov V.M. Features of structure formation and properties of metal during high-speed crystallization-deformation and modification of aluminum alloys. Krasnoyarsk: SibFU, 2015 (In Russ.).

19. Сидельников С.Б., Ворошилов Д.С., Старцев А.А., Ковалева А.А., Лопатина Е.С., Галиев Р.И., Зудин Н.А. Исследование параметров совмещенной обработки для получения лигатурных прутков из сплавов системы Al—Ti—B. Журн. СФУ. Техника и технологии. 2015. No. 5 С. 646—654. Sidelnikov S. B., Voroshilov D. S., Startsev A. A., Kovaleva A.A., Lopatina E.S., Galiev R.I., Zudin N.A. Investigation of parameters of combined processing for obtaining ligature rods from alloys of the Al—Ti—B system. J. SibFU. Technika i technologii. 2015. No. 5. P. 646—654 (In Russ.).

20. Dovzhenko I.N., Dovzhenko N.N., Sidelnikov S.B., Galiev R.I. 3D modelling of combined rolling-extrusion of alloying rods of Al—Ti—B. Non-Ferr. Metals. 2017. Vol. 43. No. 2. P. 50—55.

21. Баранов В.Н., Зенкин Е.Ю., Сидельников С.Б., Крохин А.Ю., Довженко И.Н., Ворошилов Д.С., Самчук А.П., Якивьюк О.В., Белоконова И.Н., Фролов В.А. Установка для непрерывного литья, прокатки, прессования и волочения сварочной проволоки и лигатурных прутков из цветных металлов и сплавов: Пат. 2689460 (РФ). 2019. Baranov V.N., Zenkin E.Yu., Sidelnikov S.B., Krohin A.Y., Dovzhenko I.N., Voroshilov D.S., Samchuk A.P., Yakivyuk O.V., Belokonova I.N., Frolov V.A. Installation for continuous casting, rolling, pressing and drawing of welding wire and ligature rods from non-ferrous metals and alloys: Pat. 2689460 (RF). 2019 (In Russ.).

22. Климко А.П., Загиров Н.Н., Биронт В.С., Сидельников С.Б., Лопатина Е.С. Способ получения модифицирующих материалов для алюминия и его сплавов: Пат. 2257419 (РФ). 2005. Klimko A.P., Zagirov N.N., Biront V.S., Sidelnikov S.B., Lopatina E.S. Method for obtaining modifying materials for aluminum and its alloys: Pat. 2257419 (RF). 2005 (In Russ.).

23. Кириллин В.А., Шейндлин А.Е., Чеховской В.Я., Тюкаев В.И. Энтальпия и теплоемкость диборида титана в интервале температур 273,15—2600 K. Теплофизика высоких температур. 1964. No. 5. C. 710— 715. Kirillin V.A., Sheindlin A.E., Chekhov V.Ya., Tyukaev V.I. Enthalpy and heat capacity of titanium diboride in the temperature range 273.15—2600 K. Teplofizika vysokikh temperatur. 1964. No. 5. P. 710—715 (In Russ.).

24. Application. Grain refiner for aluminium alloys [Эл. ресурс]: The official website of the company KВM with basic alloys based on aluminum /KBM Affilips B.V. Netherlands. Режим доступа: https://www.kbmaffilips.com/aluminium-based.


Review

For citations:


Kulikov B.P., Bezrukikh A.I., Sidelnikov S.B., Bondarenko D.N., Baranov V.N., Lopatina E.S., Startsev A.A., Stepanenko N.A., Nadolko A.S. Technology development for obtaining titaniumcontaining bar ligature for aluminum alloy modification. Izvestiya. Non-Ferrous Metallurgy. 2021;27(2):14-24. (In Russ.) https://doi.org/10.17073/0021-3438-2021-2-14-24

Views: 752


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)