Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Joint metallothermic reduction of titanium and rare refractory metals of V group

https://doi.org/10.17073/0021-3438-2021-1-57-65

Abstract

The features of phase formation during the joint aluminothermic reduction of titanium, niobium, tantalum, vanadium from their oxides using methods of thermodynamic modeling, differential thermal and X-ray phase analysis were studied. Computer thermodynamic modeling made it possible to predict the optimal temperature conditions in the metallothermic process, composition and ratio of reagents in the charge, behavior of elements and sequence of phase formation. Thermodynamic calculations were supplemented by differential thermal studies using the combined scanning calorimetry method to identify the kinetic and thermochemical components of the process. An analysis of theoretical and experimental data allowed us to establish that the interaction of aluminum with titanium dioxide proceeds through the stage of titanium monoxide formation and features by the formation of TixAly intermetallic compounds of various compositions (TiAl3, TiAl, Ti2Al) depending on the Al and TiO2 ratio in the charge. When titanium dioxide is partially replaced by niobium, tantalum and vanadium oxides, the metallothermic process during interactions in the Al–TiO2–Nb2O5, Al–TiO2–Ta2O5 and Al–TiO2–V2O5 systems has a similar nature, enters the active phase once liquid aluminum appears, is accompanied by exothermic effects and features by the priority formation of titanium aluminides and binary and ternary intermetallic aluminum compounds with Group 5 rare refractory metals – AlNb3, Al3Nb, Al3Ta, Al3(Ti1–х, Taх), Al3(Ti0,8V0,2). The joint conversion of titanium dioxide and rare refractory metal pentoxides during the reduction process is carried out through sequential and parallel stages of the formation of simple and complex element oxides with low oxidation states.

About the Authors

V. F. Balakirev
Institute of Metallurgy of the Ural Branch of the RAS
Russian Federation

advisor of the Russian Academy of Sciences (RAS), corresponding member of the RAS, Dr. Sci. (Chem.), chief researcher

620016, Russia, Ekaterinburg, Amundsena str., 101



T. V. Osinkina
Institute of Metallurgy of the Ural Branch of the RAS
Russian Federation

postgraduate student, junior researcher

620016, Russia, Ekaterinburg, Amundsena str., 101



S. A. Krasikov
Institute of Metallurgy of the Ural Branch of the RAS; Ural State Mining University
Russian Federation

Dr. Sci. (Eng.), chief researcher of the Institute of Metallurgy; prof.

620016, Russia, Ekaterinburg, Amundsena str., 101

620144, Russia, Ekaterinburg, Kuibysheva str., 30



E. M. Zhilina
Institute of Metallurgy of the Ural Branch of the RAS
Russian Federation

Cand. Sci. (Chem.), senior researcher

620016, Russia, Ekaterinburg, Amundsena str., 101



L. B. Vedmid’
Institute of Metallurgy of the Ural Branch of the RAS; Ural Federal University (UrFU)
Russian Federation

Cand. Sci. (Chem.), senior researcher; senior researcher

620016, Russia, Ekaterinburg, Amundsena str., 101

620002, Russia, Ekaterinburg, Mira str., 19



S. V. Zhidovinova
Institute of Metallurgy of the Ural Branch of the RAS
Russian Federation

Cand. Sci. (Chem.), senior researcher

620016, Russia, Ekaterinburg, Amundsena str., 101



References

1. Chufarov G.I., Tatievskaya E.P. Adsorption-catalytic theory of metal oxides reduction. In: Problemy metallurgii. Ed. A.N. Samarin. Moscow: AN SSSR, 1953. P. 15—32 (In Russ.).

2. Chufarov G.I., Tatievskaya E.P. Mechanism and kinetics of metal oxides reduction. In: Physicochemical foundations of the blast furnace process and modern practice of cast iron production. Ed. V.V. Mikhailov. Sverdlovsk: GNTI po chernoi and tsvetnoi metallurgii, 1956. P. 21—64 (In Russ.).

3. Krutilin A.N., Kukharchuk M.N., Sycheva O.A. Solid phase recovery of iron oxides by carbon. Lit'e i metallurgiya. 2012. No. 2. P. 11—16 (In Russ.).

4. Egry I., Brooks R., Holland-Moritz D., Novakovich R., Matsushita T., Ricci E., Seetharaman S., Wunderlich R., Jarvis D. Thermophysical properties of γ-titanium aluminide: The European IMPRESS Project. Int. J. Thermophys. 2007. No. 28. P. 1026—1036.

5. Mahdouk K., Gachon J.-C., Boirden L. Enthalpies of formation of the Al—Nb intermetallic compounds. J. Alloys Compd. 1998. No. 268. P. 118—121.

6. Novakovic R., Giuranno D., Ricci E., Tuissi A., Wunderlich R., Fecht H.-J., Egry I. Surface, dynamic and structural properties of liquid Al—Ti alloys. Appl. Surf. Sci. 2012. No. 258. P. 3269—3275.

7. Asta M. de Fontaine D., Van Schilfgaarde M. First-principles study of phase stability of Ti—Al intermetallic compounds. J. Mater. Res. 1993. Vol. 8. P. 2554.

8. Boehlert C.J. Part III. The tensile behavior of Ti—Al— NbO + Bcc orthorhombic alloys. Metal. Trans. A. 2001. Vol. 32A. P. 1977—1988.

9. Popil F., Douin J. The dislocation microstructure in orthorhombic O Ti2AlNb deformed between room temperature and 800 °C. Phil. Mag. A. 1996. Vol. 73. No. 5. P. 1401—1418.

10. Chungen Zhou, Huibin Xu, Kyoo Young Kim. The influence of additions of Nb and Cr on the aluminizing behavior of TiAl alloy. Met. Mater. Trans. A. 2000. Vol. 31A. No. 10. P. 2391—2394.

11. Chen W., Li J.W., Xu L., Lu B. Development of Ti2AlNb alloys: opportunities and challenges. Adv. Mater. Process. 2014. Vol. 175. No. 5. P. 23—27.

12. Jihua Peng, Shiqiong Li, Yong Mao, Xunfang Sun. Phase transformation and microstructures in Ti—Al—Nb—Ta system. Mater. Lett. 2002. No. 53. P. 57—62.

13. Li-Hua Ye, Hao Wang, Gang Zhou, Qing-Miao Hu, Rui Yang. Phase stability of TiAl—X (X = V, Nb, Ta, Cr, Mo, W, and Mn) alloys. J. Alloys Compd. 2020. https://doi.org/10.1016/j.jallcom.2019.153291.

14. Andreev D.E., Sanin V.N., Yukhvid V.I. SVS metallurgy of titanium aluminides. Int. J. SHS. 2005. Vol. 14. No. 3. P. 219—234.

15. Napalkov V.I., Makhov S.V. Alloying and modifying of aluminum and magnesium. Moscow: MISIS, 2002 (In Russ.).

16. Murach N.N., Lisienko V.T. Aluminothermy of Titanium. Moscow: TsNIGasik M.I., Lyakishev N.P., Emlin B.I. Theory and technology of ferroalloy production. Moscow: Metallurgiya, 1988 (In Russ.).

17. Krasikov S.A., Nadol’skii A.L., Ponomarenko A.A., Sitnikova O.A., Zhidovinova S.V. Metallothermic preparation of titanium—aluminum alloys under temperaturecontrolled conditions. Tsvetnye Metally. 2012. No. 6. P. 68—71 (In Russ.).

18. Vedmid' L.B., Krasikov S.A., Zhilina E.M., Nikitina E.V., Evdokimova I.V., Merkushev A.G. Evolution of phase formation during the aluminothermic reduction of titanium and zirconium from oxides. Russ. Metallurgy (Metally). 2018. No. 8. P. 733—736.

19. Krasikov S.A., Zhilina E.M., Pichkaleva O.A., Ponomarenko A.A., Zhidovinova S.V., Chentsov V.P. Effect of the intermetallic compound composition of the character of interphase interactions during aluminothermic reduction of titanium, nickel, and molybdenum from their oxides. Russ. Metallurgy (Metally). 2016. No. 8. P. 771—775.

20. Zhilina E.M., Krasikov S.A., Agafonov S.N., Vedmid’ L.B., Zhidovinova S.V. Thermodynamic and kinetic peculiarities of joint aluminothermic reduction of titanium and zirconium from oxides. Butlerovskie soobshcheniya. 2016. Vol. 45. No. 1. P. 130—135 (In Russ.).

21. Nunes C.A., Pinatti D.G., Robin A. Nb—Ta alloys by aluminothermic reduction of Nb2O5/Ta2O5 mixtures and electron beam melting. Int. J. Refract. Met. Hard Mater. 1999. No. 17. P. 305—314.

22. Roine A. Outokumpu HSC chemistry for windows. Chemical reaction and equilibrium software with extensive thermochemical database. Pori: Outokumpu Research OY, 2006.

23. Feng W., Wang Q., Kong Q., Zhu X., Wu J., Sun Ch. Influence of high-temperature water vapor on titanium film surface. Oxidat. Met. 2016. Vol. 86. P. 179—192.


Review

For citations:


Balakirev V.F., Osinkina T.V., Krasikov S.A., Zhilina E.M., Vedmid’ L.B., Zhidovinova S.V. Joint metallothermic reduction of titanium and rare refractory metals of V group. Izvestiya. Non-Ferrous Metallurgy. 2021;1(1):57-65. (In Russ.) https://doi.org/10.17073/0021-3438-2021-1-57-65

Views: 632


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)