Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Fluoride processing of oil hydrocarbon cracking catalyst with REE concentrate extraction

https://doi.org/10.17073/0021-3438-2021-1-28-35

Abstract

It is proposed to use a spent cracking catalyst of petroleum hydrocarbons containing 1 wt.% of rare earth element (REE) oxides as an alternative REE feed source. The study covers the process of removing silicon in the form of ammonium hexafluorosilicate (NH4)2SiF6 by sintering an oil cracking catalyst sample with NH4F and subsequent (NH4)2SiF6 sublimation to produce an aluminum-containing concentrate of rare earth elements. The orthogonal central compositional planning of the experiment was used to study the effect of three factors: sublimation temperature (350 to 400 °С), duration (40 to 80 min), and weight of the catalyst fluorinated sintered mass (5 to 10 g) on the (NH4)2SiF6 sublimation completeness. Results obtained in the experiment were used to build a second-order model, which correlate with experimental data. The dynamics of (NH4)2SiF6 sublimation removal was determined for sublimation durations of τ = 10, 20, 40 and 80 min at processing temperatures of 350, 375 and 400 °C. The (NH4)2SiF6 removal degree values calculated based on the second-order model for τ = 44, 48, 52, 56, 60, 64, 68, 72, and 76 min fit well the experimental curves. Spectra of fluorinated catalyst samples before and after sublimation were studied using X-ray phase analysis and IR spectroscopy. The data of IR spectroscopy and X-ray phase analysis are in good agreement and show that (NH4)2SiF6, (NH4)3AlF6 and unreacted NH4F are present in the catalyst with NH4F sintered mass, and only aluminum compounds are detected – NH4AlF4 and AlF3 after sublimation. These data indicate the completeness of the sublimation removal of silicon from the catalyst and NH4F sintered mass with NH4AlF4 and AlF3 aluminum compounds only observed after sublimation. REE concentration is 15 % due to silicon removal.

About the Authors

A. O. Puzhel
Inorganic Chemistry of F.M. Dostoevsky Omsk State University (OmSU)
Russian Federation

postgraduate student of the Department of Inorganic Chemistry

644077, Russia, Omsk, Mira pr., 55a



V. A. Borisov
Omsk State Technical University; Center of New Chemical Technologies of Boreskov Institute of Catalysis of SB RAS
Russian Federation

Cand. Sci. (Chem.), senior lecturer; research scientist

644050, Russia, Omsk, Mira pr., 11

644065, Russia, Omsk, Neftezavodskaya str., 54



A. R. Osipov
Center of New Chemical Technologies of Boreskov Institute of Catalysis of SB RAS
Russian Federation

research scientist

644065, Russia, Omsk, Neftezavodskaya str., 54



I. V. Petlin
Tomsk Polytechnic University
Russian Federation

Cand. Sci. (Eng.), acting head of the Scientific Laboratory of Radioactive Substances and Technologies, senior lecturer of the Department of Chemical Technology of Rare, Scattered and Radioactive Elements

634050, Russia, Tomsk, Leninskii pr., 30



A. D. Kiselev
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Cand. Sci (Eng.), project team leader of Institute of Light Materials and Technology on the basis

119991, Russia, Moscow, Leninskii pr., 6



L. N. Adeeva
Inorganic Chemistry of F.M. Dostoevsky Omsk State University (OmSU)
Russian Federation

Dr. Sci. (Eng.), prof.

644077, Russia, Omsk, Mira pr., 55a



References

1. Gupta C.K., Krishnamurthy N. Extractive metallurgy of rare earths. Boca Raton: CRC Press, 2005.

2. Manovyan A.K. Technology of processing of natural energy. Moscow: Kolos, 2004 (In Russ.).

3. Kaminskii E.F., Khavkin V.A. Deep processing of oil: technological and environmental aspects. Moscow: Tekhnika, TUMA GROUP Ltd., 2001 (In Russ.).

4. Ryabchikov D.I., Ryabukhin D.I. Analytical chemistry of rare earth elements and yttrium. Moscow: Nauka, 1966 (In Russ.).

5. Kozlowskaya I.Yu., Martsul’ V.N. Acid leaching of lanthanum from spent cracking catalyst. Russ. J. Appl. Chem. 2014. Vol. 50. No. 12. P. 1817—1822.

6. Medkov M.A., Krysenko G.F., Epov D.G. Hydrodifluoride ammonium is a promising reagent for mineral raw materials complex processing. Vestnik DVO RAN. 2011. No. 5. P. 60—65 (In Russ.).

7. O’Hara M.J., Kellogg C.M., Parker C.M., Morrison S.S., Corbey J.F., Grate J.W. Decomposition of diverse solid inorganic matrices with molten ammonium bifluoride salt for constituent elemental analysis. Chem. Geol. 2017. Vol. 466. P. 341—351.

8. Nete M., Purcell W., Nel J.T. Comparative study of tantalite dissolution using different fluoride salts as fluxes. J. Fluor. Chem. 2014. Vol. 165. P. 20—26.

9. Liu C.L., Zheng S.L., Ma S.H., Luo Y., Ding J., Wang X.H., Zhang Y. A novel process to enrich alumina and prepare silica nanoparticles from high-alumina fly ash. Fuel Process. Technol. 2018. Vol. 173. No. 19. P. 40—47.

10. D’yachenko A.N., Kraidenko R.I. Fluorination of germanium concentrates with ammonium fluorides. Russ. J. Appl. Chem. 2008. Vol. 81. No. 6. P. 952—955.

11. Thorat D.D., Tripathi B.M., Sathiyamoorthy D. Extraction of beryllium from Indian beryl by ammonium hydrofluoride. Hydrometallurgy. 2011. Vol. 109 (1-2). P. 18—22.

12. Rimkevich V.S., Malovitskii Yu.N., Dem’yanova L.P., Vorob’yev Yu.A., Belov R.V. Investigation of complex processing of non-bauxite ores in the Far Eastern region of Russia. Tikhookeanskaya geologiya. 2006. Vol. 25. No. 3. P. 66—74 (In Russ.).

13. Fedin A.S., Voroshilov F.A., Kantaev A.S., Ozherel’ev O.A. The study of the process of ammonium hexafluorosilicate sublimation. Izvestiya TPU. 2013. Vol. 323. No. 3. P. 23—27 (In Russ.).

14. Mel’nichenko E.I., Krysenko G.F., Epov D.G. Thermal properties (NH4)2SiF6. Russ. J. Inorg. Chem. 2004. Vol. 49. No. 12. P. 1803–1806 (In Russ.).

15. Mel’nichenko E.I., Krysenko G.F., Epov D.G. Research on the ammonium hexafluorosilicate utilization. Zhurnal neorganicheskoi khimii. 2005. Vol. 50. No. 2. P. 192—196 (In Russ.).

16. Doronin V.P., Sorokina T.P., Duplyakin V.K. Method of preparing microspherical oil fraction cracking catalyst: Pat. 2300420 (RF). 2000 (In Russ.).

17. Andreev A.A., D’yachenko A.N., Kraidenko R.I. Halogenoalkanes separation of mineral oxide mixture into individual components. Khimicheskaya promyshlennost’ segodnya. 2007. No. 3. P. 6—11 (In Russ.).

18. Fedin A.S., Ozherel’ev O.A., Burtsev A.Yu., Butko Yu.G., D’yachenko L.V. Statistical processing of the results of thermal studies of sublimation of ammonium hexafluorosilicate. Izvestiya vuzov. Fizika. 2017. Vol. 60. No. 9—2. P. 134—141 (In Russ.).

19. Borisov V.A., Rozhkov N.N., Ponyatova S.S., Bogdanova A.O., Adeeva L.N., Krugley A.O. The recovery of rare earth concentrate from spent cracking catalyst. AIP Conf. Proc. 2019. Vol. 2141. Paper. 020025.

20. Nakamoto K. Infrared and Raman Spectra of inorganic and coordination compounds. N.Y.: J. Wiley & Sons, Inc. 1991.

21. Borisov V.A., D’yachenko A.N., Kantaev A.S. Determination of the optimal parameters of sublimation purification of ammonium hexafluorosilicate from impurities. Izvestiya TPU. 2010. Vol. 317. No. 3. P. 73—76 (In Russ.).

22. Rahten A., Benkic P., Jesih A. The synthesis, vibrational spectra, crystal structure and thermal decomposition of (N2H5)3AlF6. Acta Chim. Slov. 1999. Vol. 46 (3). P. 339—354.


Review

For citations:


Puzhel A.O., Borisov V.A., Osipov A.R., Petlin I.V., Kiselev A.D., Adeeva L.N. Fluoride processing of oil hydrocarbon cracking catalyst with REE concentrate extraction. Izvestiya. Non-Ferrous Metallurgy. 2021;1(1):28-35. (In Russ.) https://doi.org/10.17073/0021-3438-2021-1-28-35

Views: 642


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)