Gravity-flotation gold-bearing ore concentration
https://doi.org/10.17073/0021-3438-2021-1-4-15
Abstract
The paper focuses on the study of the gold-bearing ore dressability. According to technological research, the average gold content is 11.88 g/t. The silver content is insignificant – 2.43 g/t. Main ore minerals in the sample are pyrite and pyrrhotite. According to mineralogical and X-ray structural analysis, the average content of these minerals in the ore is about 6 % (in total). Main rock-forming minerals of the original ore are: quartz (60.1 %), quartz-chlorite-mica aggregates (3.8 %), carbonates (7.1 %). According to the study results, it was found that the gold recovery in the GRG test was 72.75 % with a total concentrate yield of 1.34 % and a content of 664.78 g/t. At the same time, the gold content in tailings was 3.29 g/t. A stage test showed that it is advisable to use a two-stage scheme for ore processing by gravity technology only. The first stage is in the grinding cycle with the 60–70 % ore size, and the second stage is with the final classifier overflow size of 90 % –0.071 mm. Centrifugal separation has high performance as a free gold recovery operation in the grinding cycle. A concentrate with a gold content of 2426 g/t was obtained with a yield of 0.31 % and a recovery of 63.74 %. The beneficiation of first stage tailings ground to 90 % –0.071 mm at the KC-CVD concentrator (modeling) made it possible to extract gold into a total gravity concentrate (KC-MD + KC-CVD) of 87.25 % with a concentrate yield of 22.63 %. The gold content in tailings was 1.97 g/t. The results of gravity and flotation concentration of the original ore indicate the feasibility of using a combined gravity-flotation technological scheme. In a closed experiment of the initial ore beneficiation according to the gravity-flotation scheme at a natural pH of the pulp (without adding acid), the following products were obtained: gravity concentrate with a gold content of 2426 g/t at a yield of 0.31 % and recovery of 64.06 %; flotation concentrate (after the II cleaning) with a gold content of 122 g/t at a yield of 2.90 % and recovery of 33.01 %; the total gold recovery in the gravity-flotation concentrate was 94.07 % with a yield of 3.21 % and an Au content of 345.87 g/t, the gold content in the flotation tailings was 0.72 g/t.
About the Authors
P. K. FedotovRussian Federation
Dr. Sci. (Eng.), prof. of the Department of mineral processing and environmental protection
664074, Russia, Irkutsk, Lermontov str., 83
A. E. Senchenko
Russian Federation
general director
664074, Russia, Irkutsk, Lermontov str., 83/1
K. V. Fedotov
Russian Federation
Dr. Sci. (Eng.), prof., head of the Department of mineral processing and environmental protection
664074, Russia, Irkutsk, Lermontov str., 83
A. E. Burdonov
Russian Federation
Cand. Sci. (Eng.), associate prof. of the Department of mineral processing and environmental protection
664074, Russia, Irkutsk, Lermontov str., 83
References
1. Fedotov P.K., Senchenko A.E., Fedotov K.V., Burdonov A.E. Concentration studies for low sulfide ores. Obogashchenie Rud. 2020. No. 3. P. 15—21. DOI: 10.17580/or.2020.01.03.
2. Pelikh V.V., Salov V.M., Burdonov A.E., Lukyanov N.D. Application of Knelson CVD technology for beneficiation of gold-lead ore. Obogashchenie Rud. 2019. No. 1. P. 3—11. DOI: 10.17580/or.2019.01.01.
3. Fedotov P.K., Senchenko A.K., Fedotov K., Burdonov A.E. Studies of enrichment of sulfide and oxidized ores of gold deposits of the Aldan shield. J. Mining Inst. 2020. No. 242. P. 218—227. DOI: 10.31897/PMI.2020.2.218.
4. Chanturiya V.A., Ivanova T.A., Zimbovskiy I.G., Koporulina E.V. Investigation of modified coal sorbents for fine gold reextraction during flotation concentration. Tsvetnye Metally. 2017. No. 9. P. 28—34. DOI: 10.17580/tsm.2017.09.04.
5. Qin H., Guo X., Tian Q., Zhang L. Pyrite enhanced chlorination roasting and its efficacy in gold and silver recovery from gold tailing. Separ. Purific. Technol. 2020. No. 250. Art. 117168. DOI: 10.1016/j.seppur.2020.117168.
6. Cho K., Kim H., Myung E., Purev O., Choi N. Park C. Recovery of gold from the refractory gold concentrate using microwave assisted leaching. Metals. 2020. No. 10. Art. 571. DOI: 10.3390/met10050571.
7. Santos N.T.D.G., Moraes L.F., Da Silva M.G.C., Vieira M.G.A. Recovery of gold through adsorption onto sericin and alginate particles chemically crosslinked by proanthocyanidins. J. Cleaner Product. 2020. No. 253. Art. 119925. DOI: 10.1016/j.jclepro.2019.119925.
8. Umarova I.K., Matkarimov S.T., Makhmarezhabov D.B. Development of a flotation technology for gold-bearing ores of the amantaytau deposit. Obogashchenie Rud. 2020. No. 2. P. 29—33. DOI: 10.17580/or.2020.02.05.
9. Bulatovic S.M. Flotation behaviour of gold during processing of porphyry copper-gold ores and refractory gold-bearing sulphides. Miner. Eng. 1997. No. 10. P. 895—908. DOI: 10.1016/s0892-6875(97)00072-1.
10. De Carvalho L.C., Da Silva S.R., Neto Giardini R.M., De Souza L.F.C., Leao V.A. Bio-oxidation of refractory gold ores containing stibnite and gudmundite. Environ. Technol. Innov. 2019. No. 15. Art. 100390. DOI: 10.1016/j.eti.2019.100390.
11. Bidari E., Aghazadeh V. Alkaline leaching pretreatment and cyanidation of arsenical gold ore from the Carlin-type Zarshuran deposit. Canad. Metall. Quart. 2018. No. 57. P. 283—293. DOI: 10.1080/00084433.2018.1444931.
12. Huang Z.-J., Sun W., Gao Z.-Y. Effects of grinding on mineral surface properties and flotation behaviors. Zhongguo Youse Jinshu Xuebao (Chin. J. Non-Ferr. Met.). 2019. No. 29. P. 2671—2680. DOI: 10.19476/j.ysxb.1004.0609.2019.11.24.
13. Duchnowska M., Bakalarz A. Influence of feed particle size on upgrading selectivity of scavenger stage of industrial copper ore flotation. Miner. Metall. Proc. 2015. No. 32 (4). P. 215—221. DOI: 10.1007/bf03402478.
14. Acarkan N., Bulut G., Gül A., Kangal O., Karakaş F., Kökkiliç O., Önal G. The effect of collector’s type on gold and silver flotation in a complex ore. Separ. Sci. Technol. 2010. No. 46. P. 283—289. DOI: 10.1080/01496395.2010.512029.
15. Chen Q., Yang H.-Y., Tong L.-L., Niu H.-Q., Zhang F.-S., Chen G.-M. Research and application of a Knelson concentrator: A review. Miner. Eng. 2020. No. 152. Art. 106339. DOI: 10.1016/j.mineng.2020.106339.
16. Chen Q., Yang H.-Y., Tong L.-L. Processing a gold ore from Hainan Province using knelson gravity concentration- flotation. Dongbei Daxue Xuebao (J. North-Eastern Univ.). 2020. No. 41. P. 413—417. DOI: 10.12068/j.issn.1005-3026.2020.03.020.
17. Kurkov A.V., Solozhenkin P.M., Shcherbakova S.N. Integrated processing of the gold-antimony ores of kyuchus deposit (Sakha Republic (Yakutia, Russia)). Tsvetnye Metally. 2013. No. 4. P. 18—22.
18. Gul A., Kangal O., Sirkeci A.A., Onal G. Beneficiation of the gold bearing ore by gravity and flotation. Int. J. Miner. Metall. Mater. 2012. No. 19. P. 106—110. DOI: 10.1007/s12613-012-0523-4.
19. Fedotov P.K., Senchenko A.E., Fedotov K.V., Burdonov A.E. Dressability study for polymetallic ore deposits of the Zabaikalye territory. Obogashchenie Rud. 2019. No. 3. P. 3—9. DOI: 10.17580/or.2019.03.01.
20. Laplante A.R., Spiller D.E. Bench-scale and pilot plant test work for gravity concentration circuit design. Proc. Miner. Process. Plant Design. Practice and Control. 2002. No. 3. P. 160—175.
21. Dominy S.C., Murphy B., Gray A.H. Characterisation of gravity amenable gold ores — Sample representivity and determination methods. In: GeoMet 2011: 1-st AusIMM Intern. Geometallurgy Conf. (Brisbane, QLD, Australia, 5 Sept. 2011). P. 281—292.
22. Dominy S.C. Effects of sample mass on gravity recoverable gold test results in low-grade ores. Trans. Inst. Min. Metall. B: Appl. Earth Sci. 2014. No. 123 (4). P. 234—242. DOI: 10.1179/1743275814Y.0000000061.
Review
For citations:
Fedotov P.K., Senchenko A.E., Fedotov K.V., Burdonov A.E. Gravity-flotation gold-bearing ore concentration. Izvestiya. Non-Ferrous Metallurgy. 2021;1(1):4-15. (In Russ.) https://doi.org/10.17073/0021-3438-2021-1-4-15