Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Features of structure formation in Al–Fe–Mn alloy during crystallization at different cooling rates

https://doi.org/10.17073/0021-3438-2020-6-76-86

Abstract

The paper studies specific features of the Al–2.5%Fe–1.5%Mn alloy microstructure formation depending on the cooling rate during casting and laser melting. As-cast microstructure analysis showed that with an increase in the cooling rate during crystallization from 0.5 to 940 K/s, the primary crystallization of the Al6(Mn,Fe) phase is almost completely suppressed with the non-equilibrium eutectic volume increasing to 43 %. The Al–2.5%Fe–1.5%Mn alloy microstructure after laser melting features by the presence of dendritic-type aluminum matrix crystals with an average cell size of 0.56 μm surrounded by an iron-manganese phase of eutectic origin with an average plate size of 0.28 μm. The primary crystallization of the Al6(Mn,Fe) phase is completely suppressed. Such a microstructure is formed at cooling rates of 1.1·104 to 2.5·104 K/s, which corresponds to the cooling rates implemented in additive technologies. Regions consisting of Al6(Mn,Fe) phase primary crystals formed by the epitaxial growth mechanism were revealed at the boundary between the track and the base metal and at the remelting boundary. The smaller the eutectic plates and dendritic cell located in the epitaxial layer, the more disperse the primary crystals in the remelting zone. The Al–2.5%Fe–1.5%Mn alloy after laser melting has high hardness at room temperature (93 HV) and good thermal stability after heating up to 300 °C (hardness slightly decreases to 85 HV), and its calculated yield strength is 227 MPa. Combined with the ultra-fine microstructure formed, high processibility during laser melting, hardness at room temperature, and high calculated yield strength, Al–2.5%Fe–1.5%Mn is a promising alloy for use in additive technologies.

About the Authors

I. S. Loginova
Ural Federal University (UrFU)
Russian Federation

Cand. Sci. (Eng.), Junior research scientist, Heat treatment and metal physics department

620002, Russia, Ekaterinburg, Mira str., 19



M. V. Sazerat
National University of Science and Technology (NUST) «MISIS»; Institut Mines-Télécom (IMT) Mines Albi
Russian Federation

Student, Department of metallurgy of non-ferrous metals

119991, Russia, Moscow, Leninskii pr., 4

81000, France, Allée des sciences



N. A. Popov
Ural Federal University (UrFU)
Russian Federation

Cand. Sci. (Eng.), Lead engineer, Junior research scientist, Senior lecturer, Heat treatment and metal physics department

620002, Russia, Ekaterinburg, Mira str., 19



A. V. Pozdniakov
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Cand. Sci. (Eng.), Senior lecturer, Department of metallurgy of non-ferrous metals

119991, Russia, Moscow, Leninskii pr., 4



A. N. Solonin
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Cand. Sci. (Eng.), Head of the Department of metallurgy of non-ferrous metals

119991, Russia, Moscow, Leninskii pr., 4



References

1. Li R., Wang M., Yuan T., Song B., Chen C., Zhou K., Cao P. Selective laser melting of a novel Sc and Zr modified Al—6.2Mg alloy: Processing, microstructure, and properties. Powder Technol. 2017. Vol. 319. P. 117—128.

2. Spierings A.B., Dawson K., Heeling T., Uggowitzer P.J., Schäublin R., Palm F., Wegener K. Microstructural features of Sc- and Zr-modified Al—Mg alloys processed by selective laser melting. Mater. Design. 2017. Vol. 115. P. 52—63.

3. Zhang H., Zhu H., Nie X., Yin J., Hu Z., Zeng X. Effect of zirconium addition on crack, microstructure and mechanical behavior of selective laser melted Al—Cu—Mg alloy. Scripta Mater. 2017. Vol. 134. P. 6—10.

4. Lopez-Botello O., Martinez-Hernande U., Ramírez J., Pinna C., Mumtaz K. Two-dimensional simulation of grain structure growth within selective laser melted AA-2024. Mater. Design. 2017. Vol. 113. P. 369—376.

5. Jiang B., Zhenglong L., Xi C., Peng L., Nannan L., Yanbin C. Microstructure and mechanical properties of TiB2-reinforced 7075 aluminum matrix composites fabricated by laser melting deposition. Ceram. Int. 2019. Vol. 45. P. 5680—5692.

6. Qi T., Zhu H., Zhang H., Yin J., Ke L., Zeng X. Selective laser melting of Al7050 powder: Melting mode transition and comparison of the characteristics between the keyhole and conduction mode. Mater. Design. 2017. Vol. 135. P. 257—266.

7. Zhang J., Song B., Wei Q., Bourell D., Shi Y. A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends. J. Mater. Sci. Technol. 2019. Vol. 35. P. 270—284.

8. Biffi C.A., Fiocchi J., Bassani P., Paolino D.S., Tridello A., Chiandussi G., Rossetto M., Tuissi A. Microstructure and preliminary fatigue analysis on AlSi10Mg samples manufactured by SLM. Procedia Struct. Integrity. 2017. Vol. 27. P. 50—57.

9. Hirano K., Agarwala R., Cohen M. Diffusion of chromium in aluminium. Acta Metall. 1962. Vol. 10. P. 857—863.

10. Dobatkin V.I., Еlagin V.I. Pelletized aluminum alloys. Moscow: Metallurgiya, 1981 (In Russ.).

11. Belov N.A., Eskin D.G., Avxentieva N.N. Constituent phase diagrams of the Al—Cu—Fe—Mg—Ni—Si system and their application to the analysis of aluminium piston alloys. Acta Mater. 2995. Vol. 53. Iss. 17. P. 4709—4722.

12. Eskin D.G., Suyitno Katgerman L. Mechanical properties in the semi-solid state and hot tearing of aluminium alloys. Prog. Mater. Sci. 2004. Vol. 49. Iss. 5. P. 629—711.

13. Karbin L.M., Yanar C., Heard D.W., Wang W. Aluminum alloys having iron, silicon, vanadium and cooper: Pat. 2016/0138400 A1 (USA). 2016.

14. Wentland W.L., Karlen E., Mironets S., Ocken T.J., Bianco R. Method of manufacturing aluminum alloy articles: Pat. 2017/0016096 A1 (US). 2017.

15. Wentland W.L., Karlen E., Mironets S., Ocken T.J., Bianco R. Method of manufacturing aluminum alloy articles: Pat. 2017/0016094A1 (US). 2017.

16. Manca D.R., Churyumov A.Yu., Pozdniakov A.V., Ryabov D.K., Korolev V.A., Daubarayte D.K. Novel heatresistant Al—Si—Ni—Fe alloy manufactured by selective laser melting. Mater. Lett. 2019. Vol. 236. P. 676—679.

17. Loginova I.S., Churyumov A.Yu., Daubarayte D.K., Korolev V.A., Solonin A.N. The effect of transition metal additives Fe, Cr, Mn and Ni on the structure and properties of aluminum alloys under laser irradiation in additive technologies. Tekhnologiya legkikh splavov. 2019. No 4. P. 5—16 (In Russ.).

18. Churyumov A.Yu. Calculation of the yield strength and strain hardening of aluminum alloys by structural parameters: Abstract of the dissertation of PhD. Moscow: MISIS, 2008 (In Russ.).

19. Pozdniakov A.V., Zolotorevskiy V.S., Khomutov M.G. Hot brittleness of aluminum casting alloys. Moscow: MISIS, 2014 (In Russ.).

20. Vončina M., Mrvar P., Medved J. Thermodynamic analysis of AlSi10Mg alloy termodinamica analiza zlitine AlSi10Mg. RMZ. Mater. Geoenviron. J. 2006. Vol. 52(3). P. 621—633.

21. Pozdniakov A.V., Churyumov A.Y., Loginova I.S., Daubarayte D.K., Ryabov D.K., Korolev V.A. Microstructure and properties of novel AlSi11CuMn alloy manufactured by selective laser melting. Mater. Lett. 2018. Vol. 225. P. 33—36.

22. Churyumov A.Yu., Pozdniakov A.V., Prosviryakov A.S., Loginova I.S., Daubarayte D.K., Ryabov D.K., Korolev V.A., Solonin A.N., Pavlov M.D., Valchuk S.V. Microstructure and mechanical properties of a novel selective laser melted Al—Mg alloy with low Sc content. Mater. Res. Express. 2019. Vol. 6. P. 126595.

23. Kaplanskii Yu.Yu., Sentyurina Zh.A., Loginov P.A., Levashov E.A., Korotitskiy A.V., Travyanov A.Yu., Petrovskii P.V. Microstructure and mechanical properties of the (Fe,Ni) Al-based alloy produced by SLM and HIP of spherical composite powder. Mater. Sci. Eng. A. 2019. Vol. 743. P. 567—580.

24. Manca D.R., Churyumov A.Y., Pozdniakov A.V., Prosviryakov A.S., Ryabov D.K., Krokhin A.Y., Korolev V.A., Daubarayte D.K. Microstructure and properties of novel heat resistant Al—Ce—Cu alloy for additive manufacturing met. Mater. Int. 2019. Vol. 25(3). P. 633—640.

25. Kaplanskii Yu.Yu., Zaitsev A.A., Sentyurina Zh.A., Levashov E.A., Pogozhev Yu.S., Loginov P.A., Logachev I.A. The structure and properties of pre-alloyed NiAl—Cr(Co,Hf) spherical powders produced by plasma rotating electrode processing for additive manufacturing. J. Mater. Res. Technol. 2018. Vol. 7. Iss. 4. P. 461—468.


Review

For citations:


Loginova I.S., Sazerat M.V., Popov N.A., Pozdniakov A.V., Solonin A.N. Features of structure formation in Al–Fe–Mn alloy during crystallization at different cooling rates. Izvestiya. Non-Ferrous Metallurgy. 2020;(6):76-86. (In Russ.) https://doi.org/10.17073/0021-3438-2020-6-76-86

Views: 1597


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)