Influence of surface hardening by combined thermal force impacts on VT22 titanium alloy fatigue life and damage
https://doi.org/10.17073/0021-3438-2020-6-65-75
Abstract
The study covers the influence of electromechanical surface treatment (EMT), non-abrasive ultrasonic finishing (NAUF), their complex influence with subsequent aging on the fatigue life and surface microhardness changes. Samples for research were made of VT22 transition alloy rods after standard thermomechanical treatment. EMT was carried out by sample surface rolling with a roller and applying a high density current between them. As a result, surface thermomechanical treatment was carried out with the local fast surface heating and cooling. NAUF were implemented by shock treatment with an ultrasonic emitter striking on the treated surface. This revealed 1.8 times higher fatigue life when loading by rotational bending (with amplitude of 0.5σв) for samples after NAUF in comparison with the untreated initial state together with a slight increase in microhardness (up to 16 %). EMT reduces microhardness and fatigue life by almost 20 % and 70 %, respectively. EMT + NAUF complex processing has an insignificant effect on microhardness, but it increases fatigue life by 40 % with respect to EMT. Aging at 450 °C for 5 hours increases microhardness after EMT by 30–40 % with a simultaneous increase in fatigue life by 2 times. The aging of samples subjected to EMT + NAUF revealed virtually no increase in microhardness, but increased fatigue life by almost 3 times (as compared to EMT). According to fractography results, the reduction in fatigue life after EMT is associated with a reduction in the crack initiation stage, which virtually excludes this stage of fatigue damage accumulation from the overall sample fatigue life.
About the Authors
V. P. BagmutovRussian Federation
Dr. Sci. (Eng.), Prof., Department «Strength of materials»
400005, Russia, Volgograd, Lenin ave., 28
V. I. Vodopyanov
Russian Federation
Cand. Sci. (Eng.), Assistant prof., Department «Strength of materials»
400005, Russia, Volgograd, Lenin ave., 28
I. N. Zakharov
Russian Federation
Dr. Sci. (Eng.), Head of the Department «Strength of materials»
400005, Russia, Volgograd, Lenin ave., 28
D. S. Denisevich
Russian Federation
Cand. Sci. (Eng.), Assistant prof., Department «Strength of materials»
400005, Russia, Volgograd, Lenin ave., 28
M. D. Romanenko
Russian Federation
Postgraduate student, Department «Strength of materials»
400005, Russia, Volgograd, Lenin ave., 28
N. G. Nazarov
Russian Federation
Master student, Department «Technical maintenance and car repairs»
400005, Russia, Volgograd, Lenin ave., 28
References
1. Gorynin I.V., Chechulin B.B. Titanium in mechanical engineering. Moscow: Mashinostroenie, 1990 (In Russ.).
2. Il’in A.A., Kolachev B.A., Pol’kin I.S. Titanium alloys. Composition, structure, properties: Directory. Moscow: VILS-MATI, 2009 (In Russ.)
3. Glazunov S.G., Moiseev V.N. Structural titanium alloys. Moscow: Metallurgiya, 1974 (In Russ.)
4. Chunxiang C., BaoMin H., Lichen Z., Shuangjin, L. Titanium alloy production technology, market prospects and industry development. Mater. Design. 2011. No. 32. P. 1684—1691. DOI: 10.1016/j.matdes.2010.09.011.
5. Budinski K.G. Tribological properties of titanium alloys. Wear. 1991. No. 151. P. 203—217. DOI: 10.1016/0043-1648(91)90249-T.
6. Long M., Rack H.J. Friction and surface behavior of selected titanium alloys during reciprocating-sliding motion. Wear. 2001. No. 249. P. 158—168. DOI: 10.1016/S0043-1648(01)00517-8.
7. Sarma B., Ravi Chandran K.S. Recent advances in surface hardening of titanium. JOM. 2011. No. 63. P. 85—92. DOI: 10.1007/s11837-011-0035-0.
8. Bansal D.G., Eryilmaz O.L., Blau P.J. Surface engineering to improve the durability and lubricity of Ti—6Al—4V alloy. Wear. 2011. No. 271. P. 2006—2015. DOI: 10.1016/j.wear.2010.11.021.
9. Ivanov Y.F., Kobzareva T.Y., Raikov S.V. et al. Modification of the surface of the VT6 alloy by plasma of electric explosion of a conducting material and by electron beam. Russ. J. Non-Ferr. Met. 2014. Vol. 55. No. 1. P. 51—56. DOI: 10.3103/S1067821214010088.
10. Ivanov S.G., Guriev M.A., Loginova M.V., Deev V.B., Guriev A.M. Boriding of titanium OT4 from powder saturating media. Russ. J. Non-Ferr. Met. 2017. Vol. 58. No. 3. P. 244—249. DOI: 10.3103/S1067821217030051.
11. Fedirko V.N., Luk’yanenko A.G., Trush V.S. Solid-solution hardening of the surface layer of titanium alloys. Pt. 1. Effect on mechanical properties. Metal Sci. Heat Treat. 2014. Vol. 56. No. 7—8. P. 368—373. DOI: 10.1007/s11041-014-9764-3.
12. Kwok C.T., Man H.C., Cheng F.T., Loa K.H. Developments in laser-based surface engineering processes: with particular reference to protection against cavitation erosion. Surf. Coat. Technol. 2016. Vol. 291. P. 289—304. DOI: 10.1016/j.surfcoat.2016.02.019.
13. He B., Cheng X., Li J., Tian X.-J., Wang H.-M. Effect of laser surface remelting and low temperature aging treatments on microstructures and surface properties of Ti—55511alloy. Surf. Coat. Technol. 2017. Vol. 316. P. 104—112. DOI: 10.1016/j.surfcoat.2016.11.097.
14. Kheradmandfard M., Kashani-Bozorg S.F., Kim C.-L., Hanzaki A.Z., Pyoun Y.-S., Kim J.-H., Amanov A., Kim D.-F. Nanostructured β-type titanium alloy fabricated by ultrasonic nanocrystal surface modification. Ultrasonics- Sonochemistry. 2017. No. 39. P. 698—706. DOI: 10.1016/j.ultsonch.2017.03.061.
15. Nie X., He W., Zang S., Wang X., Zhao J. Effect study and application to improve high cycle fatigue resistance of TC11 titanium alloy by laser shock peening with multiple impacts. Surf. Coat. Technol. 2014. Vol. 253. P. 68—75. DOI: 10.1016/j.surfcoat.2014.05.015.
16. Wu J., Zou S., Zhang Y., Gong S., Sun G., Ni Zh., Cao Z., Che Zh., Feng A. Microstructures and mechanical properties of β forging Ti17 alloy under combined laser shock processing and shot peening. Surf. Coat. Technol. 2017. Vol. 328. P. 283—291. DOI: 10.1016/j.surfcoat.2017.08.069.
17. Bagmutov V.P., Vodop’yanov V.I., Zakharov I.N., Vdovenko A.V., Romanenko M.D., Chekunov V.V. Development of fatigue damages in a pseudo-α-titanium alloy after intense thermomechanical treatment. Russ. Metallurgy (Metally). 2019. No. 5. P. 548—555. DOI: 10.1134/S0036029519050033.
18. Pant B.K., Pavan A.H.V., Prakash R.V., Kamaraj M. Effect of laser peening and shot peening on fatigue striations during FCGR study of Ti6Al4V. Int. J. Fatigue. 2016. Vol. 93. P. 38—50. DOI: 10.1016/j.ijfatigue.2016.08.005.
19. Holopov Yu.V. Mechanical еngineering: Ultrasound: EMT, NAUF, GЕO. Sankt-Peterburg: LLC «Tipografiya «Beresta», 2008 (In Russ.).
20. Metallographic analysis of titanium alloys: Instruction No. 1054-76. 10.02.1974. Moscow: VIAM, 1976 (In Russ.).
21. Lütjering G. Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys. Mater. Sci. Eng. 1998. Vol 243. P. 32—45. DOI: 10.1016/S0921-5093(97)00778-8.
22. Klevcov G.V., Valiev R.Z., Semenova I.P., Klevcova N.A., Danilov V.A., Linderov M.L., Zasypkin S.V. Effect of ultrafine grain structure on kinetics and mechanism of fatigue destruction of titanium alloy VT6. Izvestiya vuzov. Tsvetnaya metallurgiya (Izvestiya. Non-Ferrous Metallurgy). 2019. No. 2. P. 58—64 (In Russ.).
23. Panin V.E., Elsukova T.F., Popkova Yu.F., Pochivalov Yu.I., Sunder R. Effect of structural states in near-surface layers of commercial titanium on its fatigue life and fatigue fracture mechanisms. Phys. Mesomech. 2015. No. 1 (18). P. 1—7. DOI: 10.1134/S1029959915010014.
24. Zarezin V.Е. Method of quality improvement of welds by ultrasonic impact treatment with substantiation of surface layer hardening parameters. Tekhniko-tekhnologicheskie problemy servisa. 2016. No. 4 (38). Р. 16—22 (In Russ.).
25. Bagmutov V.P., Denisevich D.S., Zakharov I.N., Romanenko M.D., Fastov S.A. Simulation of residual stresses during pulsed thermo-force surface hardening. Vestnik PNIPU. Mekhanika. 2019. No. 3. P. 112—124 (In Russ.).
26. Hesin YU.D., Shcheglov N.N., Vodop’yanov V.I., Gur’ev A.V. Effect of gas-saturated layer on corrosion-mechanical strength of titanium alloys. In: Titanium alloys with special properties. Moscow: Nauka, 1982. Р. 136—139 (In Russ.).
Review
For citations:
Bagmutov V.P., Vodopyanov V.I., Zakharov I.N., Denisevich D.S., Romanenko M.D., Nazarov N.G. Influence of surface hardening by combined thermal force impacts on VT22 titanium alloy fatigue life and damage. Izvestiya. Non-Ferrous Metallurgy. 2020;(6):65-75. (In Russ.) https://doi.org/10.17073/0021-3438-2020-6-65-75