β-Ti-based alloys for medical applications
https://doi.org/10.17073/0021-3438-2020-6-52-64
Abstract
Titanium alloys have been used for medical purposes for over 60 years. They are used in the manufacture of artificial heart valves, stents of blood vessels, endoprostheses of bones and joints (shoulder, knee, hip, elbow), for auricle reconstruction, in facial surgery, and also as dental implants. In first-generation materials (such as commercially pure titanium or VT6 alloys), the matrix consisted of the α-Ti phase or α-Ti and β-Ti mixture. Unfortunately, implants made of first-generation materials require replacement after 10–15 years of usage. This is due to the degradation of implants and loss of contact with the bone. Recently, these materials have been replaced by β-Ti alloys. These second- generation materials make it possible to exclude the harmful effect of aluminum and vanadium ions released during the gradual implant corrosion, and their elastic modulus is closer to the values for living bone than those for α and α+β alloys. Important areas in the development of β-Ti alloys include increasing their mechanical strength, fatigue strength, corrosion resistance and biocompatibility. New methods for the production and thermo-mechanical processing of titanium alloys arise and develop such as additive technologies or severe plastic deformation. Expensive alloying elements (such as tantalum, zirconium or niobium) are quite successfully replaced with cheaper ones (for example, chromium and manganese). As a result, the properties of titanium implants are gradually getting closer to that of the human bone, and their service life is steadily increasing. Therefore, this paper describes a comparative analysis conducted in relation to β-titanium-based alloys for medical applications.
About the Authors
B. B. StraumalRussian Federation
Dr. Sci. (Phys.-Math.), Chair; Head of the Laboratory; Professor of the Department of physical chemistry
142432, Russia, Moscow reg., Chernogolovka, Lesnaya str., 9
142432, Russia, Moscow reg., Chernogolovka, Acad. Osipyan str., 2
119049, Russia, Moscow, Leninskii pr., 4
A. S. Gornakova
Russian Federation
Cand. Sci. (Phys.-Math.), Senior research scientist
142432, Russia, Moscow reg., Chernogolovka, Lesnaya str., 9
A. R. Kilmametov
Russian Federation
Cand. Sci. (Phys.-Math.), Senior research scientist
142432, Russia, Moscow reg., Chernogolovka, Lesnaya str., 9
E. Rabkin
Israel
Cand. Sci. (Phys.-Math.), Prof.
32000 Israel, Haifa, Technion-city
N. Yu. Anisimova
Russian Federation
Cand. Sci. (Med.), Senior research scientist, Laboratory of cell immunity
115478, Russia, Moscow, Kashirskoe shosse, 23
M. V. Kiselevsky
Russian Federation
Dr. Sci. (Med.), Prof., Head of the Laboratory of cell immunity
115478, Russia, Moscow, Kashirskoe shosse, 23
References
1. Kawahara H. Cytotoxicity of implantable metals and alloys. Bull. Jpn. Inst. Met. Mater. 1992. Vol. 31. P. 1033—1039.
2. Okazaki Y., Ito Y., Ito A., Tateishi T. Effect of alloying elements on mechanical properties of titanium alloys for medical implants. J. Jpn. Inst. Met. Mater. 1993. Vol. 57. P. 332—337.
3. Yamamoto A., Honma R., Sumita M. Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells. J. Biomed. Mater. Res. 1998. Vol. 39. P. 331—340.
4. Yamamuro T. Patterns of osteogenesis in relation to various biomaterials. J. Jpn. Soc. Biomater. 1989. Vol. 7. P. 19—23.
5. Steinemann S.G. Corrosion of surgical implants—In vivo and in vitro tests. In: Evaluation of Biomaterials (Eds. Winter G.D., Leray J.L., de Groot K.). N.Y.: John Wiley and Sons, 1980. P. 1—34.
6. Niinomi M. Development of high biocompatible titanium alloys. Func. Mater. 2000. Vol. 20. P. 36—44.
7. Il’in A.A., Kolachev B.A., Pol’kin I.S. Titanium alloys. Composition, structure, properties. Moscow: VILS—MATI, 2009 (In Russ.).
8. Kolachev B.A. Physical metallurgy of titanium. Moscow: Metallurgiya, 1976 (In Russ.).
9. Kolachev B.A., Eliseev Yu.S., Bratukhin A.G., Talalaev V.D. Titanium alloys in the design and manufacture of aircraft engines and aerospace technology. Moscow: MAI, 2001 (In Russ.).
10. Kolachev B.A., Betsofen S.Ya., Bunin L.A., Volodin V.A. Physical and mechanical properties of light structural alloys. Moscow: Metallurgiya, 1995 (In Russ.).
11. Kolachev B.A., Lyasotskaya V.S. Correlation between diagrams of isothermal and anisothermal transformations and phase composition diagram of hardened titanium alloys. Metal Sci. Heat Treatment. 2003. Vol. 45. P. 119—126.
12. Egorova Yu.B., Il’in A.A., Kolachev B.A., Nosov V.K., Mamonov A.M. Effect of the structure on the cutability of titanium alloys. Metal Sci. Heat Treatment. 2003. Vol. 45. P. 134—139.
13. Kolachev B.A., Veitsman M.G., Gus’kova L.N. Structure and mechanical properties of annealed α+β titanium alloys. Metal Sci. Heat Treatment. 1983. Vol. 25. P. 626—631.
14. Fishgoit A.V., Maistrov V.M., Rozanov M.A. Interaction of short cracks with the structure of metals. Sov. Mater. Sci. 1988. Vol. 24. P. 247—251.
15. Okazaki Y., Gotoh E. Comparison of metal release from various metallic biomaterials in vitro. Biomaterials. 2005. Vol. 26. P. 11—21.
16. Teoh S.H. Fatigue of biomaterials: A review. Int. J. Fatigue. 2000. Vol. 22. P. 825—837.
17. Niinomi M. Deformation of NiTiCu shape memory single crystals in compression. Met. Mater. Trans. A. 2001. Vol. 32. P. 477—486.
18. Niinomi M. Mechanical properties of biomedical titanium alloys. Mater. Sci. Eng. A. 1998. Vol. 243. P. 231—236.
19. Machara K., Doi K., Matsushita T., Susaki Y. Application of vanadium-free titanium alloys to artificial hip joints. Mater. Trans. 2002. Vol. 43. P. 2936—2942.
20. Boehlert C., Niinomi M., Ikedu M. Improvement in fatigue characteristics of newly developed beta type titanium alloy for biomedical applications by thermo-mechanical treatments. Mater. Sci. Eng. C. 2005. Vol. 25. P. 247—252.
21. Kirby R.S., Heard S.R., Miller P., Eardley I., Holmes S., Vale J., Liu B.S. Use of the ASI titanium stent in the management of bladder outflow obstruction due to benign prostatic hyperplasia. J. Urol. 1992. Vol. 148. P. 1195—1197.
22. Nag S., Banerjee R., Fraser H.L. Microstructural evolution and strengthening mechanisms in Ti—Nb—Zr—Ta, Ti—Mo—Zr—Fe and Ti—15Mo biocompatible alloys. Mater. Sci. Eng. C. 2005. Vol. 25. P. 357—362.
23. Wapner K.L. Implications of metallic corrosion in total knee arthroplasty. Clin. Orthop. Relat. Res. 1991. Vol. 271. P. 12—20.
24. Eisenbarth E., Velten D., Müller M., Thull R., Breme J. Biocompatibility of beta-stabilizing elements of titanium alloys. Biomaterials. 2004. Vol. 25. P. 5705—5713.
25. Miller P.D., Holladay J.W. Friction and wear properties of titanium. Wear. 1958/59. Vol. 2. P. 133—140.
26. Liang Jr. P.G., Ferguson Jr. E.S., Hodge E.S. Tissue reaction in rabbit muscle exposed to metallic implants. J. Biomed. Mater. Res. 1967. Vol. 1. P. 135—149.
27. Kuan T.S., Ahrens R.R., Sass S.L. The stress-induced omega phase transformation in Ti—V alloys. Metall. Trans. A. 1975. Vol. 6. P. 1767—1774.
28. Zhao X.F., Niinomi M., Nakai M., Hieda J., Ishimoto T., Nakano T. Optimization of Cr content of metastable β-type Ti—Cr alloys with changeable Young’s modulus for spinal fixation applications. Acta Biomater. 2012. Vol. 8. P. 2392—2400.
29. Zhao X.L., Niinomi M., Nakai M. Relationship between various deformation-induced products and mechanical properties in metastable Ti—30Zr—Mo alloys for biomedical applications. J. Mech. Behav. Biomed. Mater. 2011. Vol. 4. P. 2009—2016.
30. Kilmametov A., Ivanisenko Yu., Mazilkin A.A., Straumal B.B., Gornakova A.S., Fabrichnaya O.B., Kriegel M.J., Rafaja D., Hahn H. The α→ω and β→ω phase transformations in Ti—Fe alloys under high-pressure torsion. Acta Mater. 2018. Vol. 144. P. 337—351.
31. Straumal B.B., Kilmametov A.R., Ivanisenko Yu., Gornakova A.S., Mazilkin A.A., Kriegel M.J., Fabrichnaya O.B., Baretzky B., Hahn H. Phase transformations in Ti—Fe alloys induced by high pressure torsion. Adv. Eng. Mater. 2015. Vol. 17. P. 1835—1841.
32. Kriegel M.J., Kilmametov A., Klemm V., Schimpf C., Straumal B.B., Gornakova A.S., Ivanisenko Yu., Fabrichnaya O., Hahn H., Rafaja D. Thermal stability of athermal ω-Ti(Fe) produced upon quenching of β-Ti(Fe). Adv. Eng. Mater. 2019. Vol. 21. No. 1800158.
33. Kilmametov A.R., Ivanisenko Yu., Straumal B.B., Gornakova A.S., Mazilkin A.A., Hahn H. The α → ω transformation in titanium-cobalt alloys under high-pressure torsion. Metals. 2018. Vol. 8. P. 1—12.
34. Song Y., Xu D.S., Yang R., Li D., Wu W.T., Guo Z.X. Theoretical study of the effects of alloying elements on the strength and modulus of β-type bio-titanium alloys. Mater. Sci. Eng. A. 1999. Vol. 260. P. 269—274.
35. Niinomi M., Nakai M., Hieda J. Development of new metallic alloys for biomedical applications. Acta Biomater. 2012. Vol. 8. P. 3888—3903.
36. Sakaguchi N., Niinomi M., Akahori T., Takeda J., Toda H. Relationships between tensile deformation behavior and microstructure in Ti—Nb—Ta—Zr system alloys. Mater. Sci. Eng. C. 2005. Vol. 25. P. 363—369.
37. Hanada S., Ozaki T., Watanabe T.S., Yoshimi K., Abumiya T. Composition dependence of Young’s modulus in beta titanium binary alloys. Mater. Sci. Forum. 2003. Vol. 426—432. P. 3103—3108.
38. Li S.J., Yang R., Li S., Hao Y.L., Cui Y.Y., Niinomi M., Guo Z.X. Wear characteristics of Ti—Nb—Ta—Zr and Ti—6Al—4V alloys for biomedical applications. Wear. 2004. Vol. 257. P. 869—876.
39. Long M., Rack H.J. Titanium alloys in total joint replacement — a materials science perspective. Biomaterials. 1998. Vol. 19. P. 1621—1639.
40. Tang X., Ahmed T., Rack H.J. Phase transformations in Ti—Nb—Ta and Ti—Nb—Ta—Zr alloys. J. Mater. Sci. 2000. Vol. 35. P. 1805—1811.
41. Niinomi M. Mechanical properties of biomedical titanium alloys. Mater. Sci. Eng. A. 1998. Vol. 243. P. 231—236.
42. Wang K., Gustavson L., Dumbleton J. The characterization of Ti—12Mo—6Zr—2Fe. A new biocompatible titanium alloy developed for surgical implants. In: Beta titanium in the 1990s. Warrendale, Pennsylvania. The Mineral, Metals and Materials Society. 1993. P. 2697—2704.
43. Steinemann S.G., Mausli P.A., Szmukler-Moncler S., Semlitsch M., Pohler O., Hintermann H.E. Beta-titanium alloy for surgical implants. In: Beta titanium in the 1990s. Warrendale, Pennsylvania. The Mineral, Metals and Materials Society. 1993. P. 2689—2696.
44. Fanning J.C. TIMETAL21SRx. In: Titanium 95’. Science and Тechnology. 1996. P. 1800—1807.
45. Mishra A.K., Davidson J.A., Kovacs P., Poggie R.A. Ti— 13Nb—13Zr: A new low modulus, high strength, corrosion resistant near-beta alloy for orthopaedic implants. In: Beta titanium in the 1990s. Warrendale, Pennsylvania. The Mineral, Metals and Materials Society. 1993. P. 61—66.
46. Morinaga M, Yukawa N, Maya T, Sone K, Adachi H. Theoretical design of titanium alloys. In: Proc. 6-th World Conf. on Titanium. Société Française de Méetallurgie, 1988. Р. 1601—1606.
47. Kuroda D., Niinomi M., Morinaga M., Kato Y., Yashiro T. Design and mechanical properties of new beta-type titanium alloys for implant materials. Mater. Sci. Eng. A. 1998. Vol. 243. P. 244—249.
48. Song Y., Yang R., Lia D., Hub Z., Guo Z. Calculation of bulk modulus of titanium alloys by first principles electronic structure theory. J. Comput.-Aid. Mater. Des. 1999. Vol. 6. P. 355—362.
49. Zhao X.F., Niinomi M., Nakai M., Hieda J. Optimization of Cr content of metastable β-type Ti—Cr alloys with changeable Young’s modulus for spinal fixation applications. Acta Biomater. 2012. Vol. 8. P. 2392—2400.
50. Liu H.H., Niinomi M., Nakai M., Hieda J., Cho K. Deformation- induced changeable Young’s modulus with high strength in β-type Ti—Cr—O alloys for spinal fixture. J. Mech. Behav. Biomed. 2014. Vol. 30. P. 205—213.
51. Zhao X.L., Niinomi M., Nakai M., Ishimoto T., Nakano T. Development of high Zr-containing Ti-based alloys with low Young’s modulus for use in removable implants. Mater. Sci. Eng. C. 2011. Vol. 31. P. 1436—1444.
52. Zhao X.L., Niinomi M., Nakai M., Miyamoto G., Furuhara T. Microstructures and mechanical properties of metastable Ti—30Zr—(Cr, Mo) alloys with changeable Young’s modulus for spinal fixation applications. Acta Biomater. 2011. Vol. 7. P. 3230—3236.
53. Kobayashi E., Matsumoto S., Doi H., Yoneyama T., Hamanaka H. Mechanical-properties of the binary titanium- zirconium alloys and their potential for biomedical materials. J. Biomed. Mater. Res. 1995. Vol. 29. P. 943—950.
54. Takahashi M., Kobayashi E., Doi H., Yoneyama T., Hamanaka H. Phase stability and mechanical properties of biomedical β-type titanium-zirconium based alloys containing niobium. J. Jpn. Inst. Metals. 2000. Vol. 64. P. 1120—1126.
55. Yang G.J., Zhang T. Phase transformation and mechanical properties of the Ti50Zr30Nb10Ta10 alloy with low modulus and biocompatible. J. Alloys Compd. 2005. Vol. 392. P. 291—294.
56. Kobayashi E., Doi H., Yoneyama T., Hamanaka H., Matsumoto S., Kudaka K. Evaluation of mechanical properties of dental-cast Ti—Zr based alloys. J. Dent. Mater. 1995. Vol. 14. P. 321—328.
57. Hieda J., Niinomi M., Nakai M., Kamura H., Tsutsumi H., Hanawa T. Improvement of adhesive strength between Ti—29Nb—13Ta—4.6Zr alloy and segmented polyurethane through H2O2 treatment for biomedical applications. J. Biomed. Mater. Res. B. 2013. Vol. 101B8. P. 776—783.
58. Ikeda M., Ueda M., Kinoshita T., Ogawa M., Niinomi M. Influence of Fe content of Ti—Mn—Fe alloys on phase constitution and heat treatment behavior. Mater. Sci. Forum. 2012. Vol. 706-709. P. 1893—1898.
59. Santos P.F., Niinomi M., Cho K., Liu H., Nakai M., Narushima T., Ueda K., Itoh Y. Effects of Mo addition on the mechanical properties and microstructures of Ti—Mn alloys fabricated by metal injection molding for biomedical applications. Mater. Trans. 2017. Vol. 58. P. 271—279.
60. Ikeda M., Ueda M., Matsunaga R., Niinomi M. Phase constitution and heat treatment behavior of Ti—7 mass. % Mn—Al alloys. Mater. Sci. Forum. 2010. Vol. 654-656. P. 855—858.
61. Hatanaka S., Ueda M., Ikeda M., Niinomi M. Isothermal aging behaviour in Ti—10Cr—Al alloys for medical applications. Adv. Mater. Res. 2010. Vol. 89-91. P. 232—237.
62. Ikeda M., Sugano D. The effect of aluminum content on phase constitution and heat treatment behavior of Ti—Cr—Al alloys for healthcare applications. Mater. Sci. Eng. C. 2005. Vol. 25. P. 377—381.
63. Ashida S., Kyogaku H., Hosoda H. Fabrication of Ti—Sn—Cr shape memory alloy by PM and its properties. Mater. Sci. Forum. 2012. Vol. 706-709. P. 1943—1947.
64. Murayama Y., Sasaki S. Mechanical properties of Ti— Cr—Sn—Zr alloys. Bull. Niigata Inst. Tech. 2009. Vol. 14. P. 1—8.
65. Kasano Y., Inamura T., Kanetaka H., Miyazaki S., Hosoda H. Phase constitution and mechanical properties of Ti—(Cr, Mn)—Sn biomedical alloys. Mater. Sci. Forum. 2010. Vol. 654-656. P. 2118—2121.
66. Nakai M., Niinomi M., Zhao X.F., Zhao X.L. Self-adjustment of Young’s modulus in biomedical titanium alloy during orthopaedic operation. Mater. Lett. 2011. Vol. 65. P. 688—690.
67. Thomas J., Mogonye J.E., Mantri S.A., Choudhuri D., Banerjee R., Scharf T.W. Additive manufacturing of compositionally graded laser deposited titanium-chromium alloys. Additive Manufacturing. 2020. Vol. 33. No. 101132.
68. Nagase T., Iijima Y., Matsugaki A., Ameyama K., Nakano T. Design and fabrication of Ti—Zr—Hf—Cr—Mo and Ti—Zr—Hf—Co—Cr—Mo high entropy alloys as metallic biomaterials. Mater. Sci. Eng. C. 2020. Vol. 107. No. 110322.
69. Geetha M., Singh A.K., Muraleedharan K., Gogia A.K., Asokamani R. Effect of thermomechanical processing on microstructure of a Ti—13Nb—13Zr alloy. J. Alloys Compd. 2001. Vol. 329. P. 264—271.
70. Geetha M., Singh A.K., Gogia A.K., Asokamani R. Effect of thermomechanical processing on evolution of various phases in Ti—Nb—Zr alloys. J. Alloys Compd. 2004. Vol. 384. P. 131—144.
71. Straumal B.B., Gornakova A.S., Kucheev Y.O., Baretzky B., Nekrasov A.N. Grain boundary wetting by a second solid phase in the Zr—Nb alloys. J. Mater. Eng. Perf. 2012. Vol. 21. P. 721—724.
72. Straumal B.B., Bokstein B.S., Straumal A.B., Petelin A.L. First observation of a wetting transition in low-angle grain boundaries. JETP Lett. 2008. Vol. 88. P. 537—542.
73. Kogtenkova O.A., Straumal B.B., Protasova S.G., Gornakova A.S., Zięba P., Czeppe T. Effect of the wetting of grain boundaries on the formation of a solid solution in the Al—Zn system. JETP Lett. 2012. Vol. 96. P. 380—384.
74. Straumal B.B., Kogtenkova O.A., Kolesnikova K.I., Straumal A.B., Bulatov M.F., Nekrasov A.N. Reversible «wetting» of grain boundaries by the second solid phase in the Cu—In system. JETP Lett. 2014. Vol. 100. P. 535—539.
75. Straumal B.B., Kilmametov A.R., Ivanisenko Yu., Gornakova A.S., Mazilkin A.A., Kriegel M.J., Fabrichnaya O.B., Baretzky B., Hahn H. Phase transformations in Ti—Fe alloys induced by high pressure torsion. Adv. Eng. Mater. 2015. Vol. 17. P. 1835—1841.
76. Gornakova A.S., Prokofiev S.I., Straumal B.B., Kolesnikova K.I. Growth of (α-Ti) grain boundary layers in Ti—Co alloys. Russ. J. Non-Ferr. Met. 2016. Vol. 57. No. 6. Р. 703—709.
77. Gornakova A.S., Straumal B.B., Nekrasov A.N., Kilmametov A., Afonikova N.S. Grain boundary wetting by a second solid phase in Ti—Fe alloys. J. Mater. Eng. Perform. 2018. Vol. 27. P. 4989—4992.
78. Gornakova A.S., Straumal A.B., Khodos I.I., Gnesin I.B., Mazilkin A.A., Afonikova N.S., Straumal B.B. Effect of composition, annealing temperature and high pressure torsion on structure and hardness of Ti—V and Ti—V—Al alloys. J. Appl. Phys. 2019. Vol. 125. No. 082522.
79. Gornakova A.S., Straumal B.B., Prokofiev S.I. Coarsening of (αTi)+(βTi) microstructure in the Ti—Al—V alloy at constant temperature. Adv. Eng. Mater. 2018. Vol. 20. No. 1800510.
80. Niinomi M. Trend and present state of titanium alloys with body centered structure for biomedical applications. Bull ISIJ. 2010. Vol. 15. P. 661—670.
81. Niinomi M., Fukui H., Hattori T., Kyo K., Suzuki A. Development of high biocompatible titanium alloy. Materia Jpn. 2002. Vol. 41. P. 221—223.
82. Yilmazer H., Niinomi M., Nakai M., Hieda J., Todaka Y., Miyazaki T. Mechanical properties of a medical β-type titanium alloy with specific microstructural evolution through high pressure torsion. Mater. Sci. Eng. C. 2013. Vol. 33. P. 2499—2507.
83. Akahori T., Niinomi M., Fukui H., Ogawa M., Toda H. Improvement in fatigue characteristics of newly developed beta type titanium alloy for biomedical applications by thermo-mechanical treatments. Mater. Sci. Eng. C. 2005. Vol. 25. P. 248—254.
84. Nakai M., Niinomi M., Oneda T. Improvement in fatigue strength of biomedical β-type Ti—Nb—Ta—Zr alloy while maintaining low Young’s modulus through optimizing ω-phase precipitation. Met. Mater. Trans. A. 2012. Vol. 43. P. 294—302.
85. Song X., Niinomi M., Tsutsumi H., Akahori T., Nakai M., Yonezawa S., Wang L. Effect of Y2O3 on mechanical properties of Ti—29Nb—13Ta—4.6Zr for biomedical applications. Mater. Sci. Forum. 2010. Vol. 654-656. P. 2142—2145.
86. Liu H., Niinomi M., Nakai M., Obara S., Fujii H. Improved fatigue properties with maintaining low Young’s modulus achieved in biomedical beta-type titanium alloy by oxygen addition. Mater. Sci. Eng. A. 2017. Vol. 704. P. 10—17.
87. Geng F., Niinomi M., Nakai M. Observation of yielding and strain hardening in a titanium alloy having high oxygen content. Mater. Sci. Eng. A. 2011. Vol. 528. P. 5435—5445.
88. Liu H., Niinomi M., Nakai M., Cong X., Cho K., Boehlert C.J., Khademi V. Abnormal deformation behavior of oxygen-modified β-type Ti—29Nb—13Ta—4.6Zr alloys for biomedical applications. Met. Mater. Trans. A. 2017. Vol. 48. P. 139—149.
89. Yilmazer H., Niinomi M., Nakai M., Huihong L., Cho K., Todaka Y., Shiku H., Matsue T. Developing biomedical nano-grained β-type titanium alloys using high pressure torsion for improved cell adherence. RSC Adv. 2016. Vol. 6. P. 7426—7430.
90. Zhao X., Niinomi M., Nakai M., Hieda J., Ishimoto T., Nakano T. Optimization of Cr content of metastable β-type Ti—Cr alloys with changeable Young’s modulus for spinal fixation applications. Acta Biomater. 2012. Vol. 8. P. 2392—2400.
91. Santos P.F., Niinomi M., Cho K., Nakai M., Liu H., Ohtsu N., Hirano I.M., Narushima T. Microstructures, mechanical properties and cytotoxicity of low cost beta Ti—Mn. Acta Biomater. 2015. Vol. 26. P. 366—376.
92. Hattori T., Ito N., Morikawa K., Sato K., Akahori T., Niinomi M. Animal study on biocompatibility of Ti—29Nb— 13ta—4.6Zr titanium alloy. Bone tissue reaction and metal ion release in femoral head replacement of sheep. In: Proc. 2-nd European Conf. on Biomaterials. 2009.
93. Niinomi M., Nakai M. Titanium-based biomaterials for preventing stress shielding between implant devices and bone. Int. J. Biomater. 2011. Vol. 2011. P. 1—10.
94. Ishikura K., Hattori T., Akahori T., Niinomi M. Mechanical properties and biocompatibility of low cost β type Ti—Mn system binary alloys for biomedical applications. J. Jpn Inst. Met. Mater. 2013. Vol. 77(7). P. 253—258.
Review
For citations:
Straumal B.B., Gornakova A.S., Kilmametov A.R., Rabkin E., Anisimova N.Yu., Kiselevsky M.V. β-Ti-based alloys for medical applications. Izvestiya. Non-Ferrous Metallurgy. 2020;(6):52-64. (In Russ.) https://doi.org/10.17073/0021-3438-2020-6-52-64