Comparative study of superelastic Ti–Zr–Nb and commercial VT6 alloy billets by QForm simulation
https://doi.org/10.17073/0021-3438-2020-6-32-43
Abstract
A comparative simulation of hot radial shear rolling (RSR) of billets made of a superelastic Ti–Zr–Nb and a commercial VT6 alloy was performed using the QForm finite element modeling program. Rolling in 48 modes with a variable feed angle and elongation ratio at 4 levels and initial rolling temperature at 3 levels was investigated for each alloy. The Ti–Zr–Nb alloy rheology during hot deformation was determined experimentally by hot upset forging and imported into the QForm program. The presence of maxima on the flow curves at the initial stage of deformation, which are absent in the VT6 alloy, is revealed. Simulation results are presented in the form of fields of the stiffness coefficient, strain rate intensity, cumulative strain degree in the maximum reduction section depending on the rolling mode. General regularities of the Ti–Zr–Nb and VT6 behavior in RSR are similar. The gradient of the fields studied decreases, and the roll pressure and torque increase with an increase in the feed angle and elongation ratio. The initial rolling temperature does not significantly affect the deformation pattern, but it significantly affects the roll pressure and torque. At the same time, the experimental alloy demonstrated the greater tendency to localize deforming forces in the near-contact zone and to increase the gradient of stress-strain state parameters over the billet section. The study of the tightening shape and depth of rolled billet ends showed that the Ti–Zr–Nb alloy has a 3.5–9.6 % greater tightening depth. It is shown that experimental alloy rolling requires 1.6–2.4 times higher roll pressure and torque as compared to the commercial alloy.
About the Authors
Ta Dinh XuanRussian Federation
Graduate student, Department of metal forming
119991, Russia, Moscow, Leninkii pr., 4
V. A. Sheremetyev
Russian Federation
Cand. Sci. (Eng.), Senior researcher, Department of metal forming
119991, Russia, Moscow, Leninkii pr., 4
V. S Komarov
Russian Federation
Cand. Sci. (Eng.), Researcher, Laboratory of plastic deformation of metallic materials
119991, Russia, Moscow, Leninskii pr., 49
A. A. Kudryashova
Russian Federation
Graduate student, Engineer, Scientific and educational center of nanomaterials and nanotechnology
119991, Russia, Moscow, Leninkii pr., 4
S. P. Galkin
Russian Federation
Dr. Sci. (Eng.), Prof., Department of metal forming
119991, Russia, Moscow, Leninkii pr., 4
V. A. Andreev
Russian Federation
Cand. Sci. (Eng.), General director; Senior researcher, Laboratory of plastic deformation of metallic materials
117449, Russia, Moscow, Karier, 2a, bld. 1-137
119991, Russia, Moscow, Leninskii pr., 49
S. D. Prokoshkin
Russian Federation
Dr. Sci. (Phys.-Math.), Prof., Department of metal forming
119991, Russia, Moscow, Leninkii pr., 4
V. Brailovski
Canada
Cand. Sci. (Eng.), Prof.
Canada, Montreal 1100, Notre Dame
References
1. Fu J., Yamamoto A., Kim H.Y., Hosoda H., Miyazaki S. Novel Ti-base superelastic alloys with large recovery strain and excellent biocompatibility. Acta Biomater. 2015. Vol. 17. P. 56—67.
2. Wang B.L., Li L., Zheng Y.F. In vitro cytotoxicity and hemocompatibility studies of Ti—Nb, Ti—Nb—Zr and Ti—Nb—Hf biomedical shape memory alloys. Biomed. Mater. 2010. Vol. 5. Р. 044102.
3. Soldatenko A.S., Karachevtseva M.A., Sheremetyev V.A., Kudryashova A.A., Arkhipova A.Yu., Andreev V.A., Prokoshkin S.D., Brailovski V., Moisenovich M.M., Shaitan K.V. Features of in vitro interaction of osteoblast-like MG63 cells with the surface of Ti—Zr—Nb shape memory alloys. Moscow University Biological Sciences Bulletin. 2019. Vol. 74. Iss. 4. P. 250—255.
4. Sheremetyev V., Brailovski V., Prokoshkin S., Inaekyan K., Dubinskiy S. Functional fatigue behavior of superelastic beta Ti—22Nb—6Zr (at.%) alloy for load-bearing biomedical applications. Mater. Sci. Eng. C. 2016. Vol. 58. P. 935—944.
5. Prokoshkin S., Brailovski V., Dubinskiy S., Zhukova Y., Sheremetyev V., Konopatsky A., Inaekyan K. Manufacturing, structure control and functional testing of Ti—Nb-based SMA for medical application. Shape Memory and Superelasticity. 2016. Vol. 2. Iss. 2. P. 130—144.
6. Kudryashova A., Sheremetyev V., Lukashevich K., Cheverikin V., Inaekyan K., Galkin S., Prokoshkin S., Brailovski V. Effect of a combined thermomechanical treatment on the microstructure, texture and superelastic properties of Ti—18Zr—14Nb alloy for orthopedic implants. J. Alloys Compd. 2020. Vol. 843. Art. 156066. DOI: 10.1016/j.jallcom.2020.156066.
7. Sheremetyev V., Kudryashova A., Cheverikin V., Korotitskiy A., Galkin S., Prokoshkin S., Brailovski V. Hot radial shear rolling and rotary forging of metastable beta Ti—18Zr—14Nb (at.%) alloy for bone implants: Microstructure, texture and functional properties. J. Alloys Compd. 2019. Vol. 800. P. 320—326.
8. Hadasik E., Kuziak R., Kawalla R., Adamczyk M., Pietrzyk M. Rheological model for simulation of hot rolling of new generation steel strips for automotive applications. Steel Res. Inter. 2006. Vol. 77. P. 927—933.
9. Dinh X.T., Sheremetyev V.A., Kudryashova A.A., Galkin S.P., Andreev V.A., Prokoshkin S.D., Brailovski V. Influence of the combined radial shear rolling and rotary forging on the deformation mode of the small-diameter rod billet made of titanium alloys. Russ. J. Non-Ferr. Met. 2020. Vol. 61. Iss. 3. P. 271—279.
10. Potapov I.N., Polukhin P.I. Helical Rolling Technology. Moscow: Metallurgiya, 1990 (In Russ.).
11. Tselikov А.I., Barbarich М.V., Vasilchikov М.V., Granovskiy S.P., Zhukevich-Stosha E.A. Special rolling mills. Moscow: Metallurgiya, 1971 (In Russ.).
12. Romantsev B., Goncharuk A., Aleshchenko A., Gamin Y., Mintakhanov M. Development of multipass skew rolling technology for stainless steel and alloy pipes’ production. IJAMT. 2018. Vol. 97. Iss. 9-12. P. 3223—3230.
13. Shatalov R.L., Medvedev V.A., Zagoskin E.E. Determination of mechanical properties of steel thinwalled vessels by hardness after hot screw rolling with subsequent stamping and quenching. Chernye Metally. 2019. Vol .7. P. 36—40 (In Russ.).
14. Galkin S.P. Theory and technology of stationary screw rolling of low-ductility steel and alloy billets and bars: Abstract of a thesis of the dissertation of Dr. Sci. (Eng.). Moscow: MISIS, 1998 (In Russ.).
15. Galkin S.P. Trajectory of deformed metal as basis for controlling the radial-shift and screw rolling. Stal’. 2004. No. 7. Р. 63—66.
16. Galkin S.P., Romantsev B.A., Kharitonov E.A. Putting into practice innovative potential in the universal radial-shear rolling process. CIS Iron Steel Rev. 2014. Vol. 2014. Iss. 9. P. 35—39.
17. Karpov B.V., Patrin P.V., Galkin S.P., Kharitonov E.A., Karpov I.B. Radial-shear rolling of titanium alloy VT-8 bars with controlled structure for small diameter ingots (≤ 200 mm). Metallurgist. 2018. Vol. 61. Iss. 9-10. P. 884—890.
18. Dobatkin S., Galkin S., Estrin Y., Serebryany V., Diez M., Martynenko N., Lukyanova E., Perezhogin V. Grain refinement, texture, and mechanical properties of a magnesium alloy after radial-shear rolling. J. Alloys Compd. 2019. Vol. 774. P. 969—979.
19. Akopyan T., Aleshchenko A.S., Belov N.A., Galkin S.P. Effect of radial-shear rolling on the formation of structure and mechanical properties of Al—Ni and Al—Ca aluminummatrix composite alloys of eutectic type. Phys. Met. Metallograph. 2018. Vol. 119. Iss. 3. P. 241—250.
20. Akopyan T.K., Belov N.A., Aleshchenko A.S. Galkin S.P., Gamin Y.V., Gorshenkov M.V., Cheverikin V.V., Shurkin P.K. Formation of the gradient microstructure of a new Al alloy based on the Al—Zn—Mg—Fe—Ni system processed by radial-shear rolling. Mater. Sci. Eng. 2019. Vol. 746. P. 134—144.
21. Sheremet’ev V.A., Kudryashova A.A., Dinh X.T., Galkin S.P., Prokoshkin S.D., Brailovskii V. Advanced technology for preparing bar from medical grade Ti—Zr—Nb superelastic alloy based on combination of radial-shear rolling and rotary forging. Metallurgist. 2019. Vol. 63. Iss. 1-2. P. 51—61.
22. Galkin S.P., Romantsev B.A., Ta D.X., Gamin Yu.V. Resource- saving technology for production of round bars from used shaft of rolling railroad stock. Chernye Metally. 2018. Vol. 4. P. 21—27 (In Russ.).
23. Sheremetev V.A., Kudryashova A.A., Galkin S.P., Prokoshkin S.D., Brailovskij V.I. Method of producing rods from superplastic alloys of titanium-zirconium-niobium system: Pat. 2692003 (RF). 2019 (In Russ.).
24. Skripalenko M.M., Romantsev B.A., Galkin S.P., Skripalenko M.N., Kaputkina L.M., Huy T.B. Prediction of the fracture of metal in the process of screw rolling in two-roll mill. Metallurgist. 2018. Vol. 61. Iss. 11—12. P. 925—933.
25. Naizabekov A., Lezhnev S., Arbuz A., Panin E. Computer simulation of the combined process «helical rolling— pressing». Key Eng. Mater. 2016. Vol. 716. P. 614—619.
26. Akopyan T.K., Gamin Y.V., Galkin S.P., Prosviryakov A.S., Aleshchenko A.S., Noshin M.A., Koshmin A.N., Fomin A.V. Radial-shear rolling of high-strength aluminum alloys: Finite element simulation and analysis of microstructure and mechanical properties. Mater. Sci. Eng. 2020. Vol. 786. Р. 139424.
27. Skripalenko M.M., Galkin S.P., Sung H.J, Romantsev B.A., Huy T.B., Skripalenko M.N., Kaputkina L.M., Sidorow A.A. Prediction of potential fracturing during radial-shear rolling of continuously cast copper billets by means of computer simulation. Metallurgist. 2019. Vol. 62. Iss. 9-10. P. 849—856.
28. QuantorForm2019. URL: https://qform3d.com (accessed: 01.08.2020).
29. Vlasov A.V., Stebunov S.A., Evsyukov S.A., Biba N.V., Shitikov A.A. Finite-element modeling of technological processes of forging and forging: a tutorial. Moscow: MGTU im. N.E. Baumana, 2019 (In Russ.).
Review
For citations:
Xuan T., Sheremetyev V.A., Komarov V.S., Kudryashova A.A., Galkin S.P., Andreev V.A., Prokoshkin S.D., Brailovski V. Comparative study of superelastic Ti–Zr–Nb and commercial VT6 alloy billets by QForm simulation. Izvestiya. Non-Ferrous Metallurgy. 2020;(6):32-43. (In Russ.) https://doi.org/10.17073/0021-3438-2020-6-32-43