Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Computer simulation of the technology for AK4-1 alloy die forging production for an internal combustion engine piston

https://doi.org/10.17073/0021-3438-2020-6-24-31

Abstract

The process of hot die forging of AK4-1 aluminum alloy billets for the piston of an internal combustion engine (ICE) for an unmanned aerial vehicle (UAV) was simulated using the Deform-3D software package. The object of research was an ICE piston mounted on one of the UAV types of Russian production. Simulation was performed using the following parameters: tooling and billet temperature was 450 °C, ambient temperature was 20 °C, punch speed was 5 mm/s, and Siebel friction index was 0.4. Rigid plastic medium was chosen as a material model. The number of elements (6000) was selected so that at least 3 elements fit in the narrowest section of the part. Thus, as illustrated by the piston die forging, computer simulation in the Deform-3D software makes it possible to develop hot die forging processes for making aluminum alloy billets for UAV ICE pistons. At the same time, computer simulation can be used to evaluate the power parameters of the hot die forging process, study the nature of billet forming in die forging, make necessary adjustments to the virtual process, and develop the design of a die forging tool in order to select the most effective process solutions when designing a real process. The described computer simulation technique can be extended to other aluminum alloy die forgings.

About the Authors

I. L. Konstantinov
Siberian Federal University (SibFU)
Russian Federation

Cand. Sci. (Eng.), Assistant prof., Department of metal forming

660025, Russia, Krasnoyarsk, pr. Krasnoyarskiy rabochiy, 95



P. G. Potapov
LLC «Krasnoyarskii metallurgicheskii zavod»
Russian Federation

Specialist of the Chief technologist department

660111, Russia, Krasnoyarsk, Pogranichnikov str., 42



S. B. Sidelnikov
Siberian Federal University (SibFU)
Russian Federation

Dr. Sci. (Eng.), Prof., Head of the Department of metal forming

660025, Russia, Krasnoyarsk, pr. Krasnoyarskiy rabochiy, 95



D. S. Voroshilov
Siberian Federal University (SibFU)
Russian Federation

Cand. Sci. (Eng.), Assistant prof., Department of metal forming

660025, Russia, Krasnoyarsk, pr. Krasnoyarskiy rabochiy, 95



Yu. V. Gorokhov
Siberian Federal University (SibFU)
Russian Federation

Dr. Sci. (Eng.), Prof., Department of metal forming

660025, Russia, Krasnoyarsk, pr. Krasnoyarskiy rabochiy, 95



V. P. Katryuk
Siberian Federal University (SibFU)
Russian Federation

Senior lecturer, Department of common metallurgy

660025, Russia, Krasnoyarsk, pr. Krasnoyarskiy rabochiy, 95



References

1. Biard R.U., McLeyn T.U. Small unmanned aerial vehicles: theory and practice. Moscow: Tekhnosfera, 2015 (In Russ.).

2. Kolonakov A.A., Kukharenko A.V., Deev V.B., Abaturova A.A. Structure and chemical composition of the AK12MMgN piston alloy fabricated based on various charges. Russ. J. Non-Ferr. Met. 2015. Vol. 56. No. 4. P. 428—433.

3. Sadokha M.A. Investigation of technical parameters of chills for production of piston castings. Litiyo i Metallurgiya. 2011. No. 3. P. 61—64 (In Russ.).

4. Figlin S.Z., Boytsov V.V., Kalpin Yu.G., Kaplin Yu.I. Isothermal deformation of metals. Moscow: Mashinostroenie, 1978 (In Russ.).

5. Chumachenko E.N., Smirnov O.M., Tsepin M.A. Superplasticity: Materials, theory, technology. Moscow: KomKniga, 2005 (In Russ.).

6. Lisunets N.L., Solomonov K.N., Tsepin M.A. Die forging of aluminum billets. Moscow: Mashinostroenie, 2009 (In Russ.).

7. Wang G.-F., Wang H.-L., Liang J.-Y., Jia H.-H., Gu Y.-B. Research on quick superplastic forming technology of industrial AA5083 aluminum alloy for rail traffic. Suxing Gongcheng Xuebao/J. Plasticity Eng. 2019. Vol. 26. Iss. 2. P. 37—42. DOI: 10.3969/j.issn.1007-2012.2019.02.004.

8. Wang G., Jia H., Gu Y., Liu Q. Research on quick superplastic forming technology of industrial aluminum alloys for rail traffic. Defect and Diffusion Forum. 2018. Vol. 385. P. 468—473. DOI: 10.4028/www.scientific.net/DDF.385.468.

9. Guofeng W., Chao S., Shufen L., Mo Y. Research on quick superplastic forming technology of aluminum alloy complex components. Materialwissenschaft und Werkstofftechnik. 2014. Vol. 45. Iss. 9. P. 854—859. DOI: 10.1002/mawe.201400294.

10. Bruschi S., Ghiotti A., Michieletto F. Hot tensile behavior of superplastic and commercial AA5083 sheets at high temperature and strain rate. Key Eng. Mater. 2013. Vol. 554-557. P. 63—70. DOI: 10.4028/www.scientific.net/KEM.554-557.63.

11. Wu X.-W., Wang Y., Liang H.-J., Li J., Ma Z.-L., Zhao S.-S., Feng S.-S., Yang H.-X. Research on high speed superplastic forming of aluminium alloy automotive panel. Suxing Gongcheng Xuebao/J. Plasticity Eng. 2012. Vol. 19. Iss. 1. P. 1—5. DOI: 10.3969/j.issn.1007-2012.2012.01.001.

12. Liu J., Tan M.-J., Jarfors A.E.W., Lim S.C.V., Fong K.-S., Castagne S. Greener manufacturing: Superplasticlike forming. J. Phys.: Conf. Ser. 2012. Vol. 379. Iss. 1. No. 012034. DOI: 10.1088/1742-6596/379/1/012034.

13. Konstantinov I.L., Gubanov I.Yu., Klemenkova D.V., Astrashabov I.O., Sidelnikov S.B., Gorokhov Yu.V. Computersimulated upgrading procedures of the hot aluminumalloy forging process technology. MGTU im. G.I. Nosova. 2016. Vol. 14. No. 1. P. 46—52 (In Russ.).

14. Gorokhov Yu.V., Konstantinov I.L. Computer simulation of processes of hot forming of aluminum alloys. Pt. 1. Izvestiya TulGU. 2017. No. 11. P. 101—109 (In Russ.).

15. Konstantinov I.L., Gubanov I.Yu., Gorokhov Yu.V. Computer simulation of the production process for isothermal forging of profiled panels made of aluminum alloys. Russ. J. Non-Ferr. Met. 2013. Vol. 54. No. 3. P. 220—223. DOI: 10.3103/S1067821213030085.

16. Konstantinov I.L., Gubanov I.Yu., Astrashabov I.O., Sidel’nikov S.B., Belan N.A. Simulation of die forging of an AK6 aluminum alloy forged piece. Russ. J. Non-Ferr. Met. 2015. Vol. 56. No.2. P. 177—180. DOI: 10.3103/S1067821215020108.

17. Vrolijk M., Lorenz D., Porzner H., Holecek M. Supporting lightweight design: virtual modeling of hot stamping with tailored properties and warm and hot formed aluminium. Proc. Eng. 2017. Vol. 183. P. 336—342. DOI: 10.1016/j.proeng.2017.04.049.

18. Kharseev P.E., Petrov V.A. The choice of stress-strain state indicators for constructing plasticity diagrams by computer simulation. Tekhnologiya legkikh splavov. 2015. No. 2. P. 131—137 (In Russ.).

19. Petrov M., Petrov P., Bast J., Sheypak А. Investigation of the heat transport during the hollow spheres production from the tin melt. Computer Methods in Materials Science. 2013. Vol. 13. No. 2. Р. 276—282.

20. Petrov P.A. Simulation of the process of aluminum and magnesium alloys isothermal stamping. Kuznechno-shtampovochnoe proizvodstvo. Obrabotka materialov davleniem. 2011. No. 12. P. 29—36 (In Russ.).

21. Larin S.N., Platonov V.I., Solomonov K.N. Аpproach to assessment of microdamages accumulated during the constrained molding of shells made of the material subject to energy theory of creep and damage. J. Chem. Technol. Metal. 2017. Vol. 52. No. 4. P. 679—684.

22. Miklyaev P.G., Dudenkov V.M. Deformation resistance and ductility of aluminum alloys. Moscow: Metallurgiya, 1973 (In Russ.).


Review

For citations:


Konstantinov I.L., Potapov P.G., Sidelnikov S.B., Voroshilov D.S., Gorokhov Yu.V., Katryuk V.P. Computer simulation of the technology for AK4-1 alloy die forging production for an internal combustion engine piston. Izvestiya. Non-Ferrous Metallurgy. 2020;(6):24-31. (In Russ.) https://doi.org/10.17073/0021-3438-2020-6-24-31

Views: 713


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)