Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Studying the influence of radial-shear rolling on the thermo-deformation conditions of aluminum AA1050 processing

https://doi.org/10.17073/0021-3438-2020-5-70-83

Abstract

The effect of deformation modes on the process conditions of radial-shear rolling (RSR) of commercial purity aluminum AA1050 is analyzed. Based on finite-element modeling (FEM), temperature variation at various feed angles and elongation in the first and last passes is obtained. An increase in the feed angle slightly raises temperature fluctuations in the surface layer due to increasing reduction per pass, but it does not significantly influence the total deformation heating during RSR. The final deformation temperature can be controlled by varying the reduction ratio. In this case, it is necessary to take into account the initial heating temperature, dimensions of final rolled products and elongation per pass. The billet size has a significant effect on thermal variations during RSR. In the last pass, when diameters are 20–14 mm, deformation heating is almost completely compensated by rod cooling in contact with the environment and the tool and begins to prevail with an increase in the elongation ratio of more than 1.2. The analysis of equivalent strain (εe) at various deformation modes showed that the difference in εe values over the rod cross-section decreases with the increasing feed angle. A comparison of the data obtained with the hardness and microstructure of rolled AA1050 samples shows that εe has a significant effect on changes in the structure and properties to a certain value. This is confirmed by the obtained microhardness distribution over the cross section of rods. Mechanical properties of obtained rods correspond to the properties of commercial purity aluminum in the work hardened condition (σв ~ 115 MPa, σ0.2 ~ 110 MPa, δ ~ 1 %, HV ~ 40÷43).

About the Authors

Yu. V. Gamin
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Cand. Sci. (Eng.), associate prof. of the Department of metal forming

119991, Moscow, Leninskii pr., 4



A. N. Koshmin
National University of Science and Technology (NUST) «MISIS»
Russian Federation

postgraduate student, engineer of the Department of metal forming

119991, Moscow, Leninskii pr., 4



A. P. Dolbachev
National University of Science and Technology (NUST) «MISIS»
Russian Federation

postgraduate student, engineer of the Department of metal forming

119991, Moscow, Leninskii pr., 4



S. P. Galkin
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Dr. Sci. (Eng..), prof. of the Department of metal forming

119991, Moscow, Leninskii pr., 4



A. S. Aleshchenko
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Cand. Sci. (Eng.), head of the Department of metal forming

119991, Moscow, Leninskii pr., 4



M. V. Kadach
National University of Science and Technology (NUST) «MISIS»
Russian Federation

head of the laboratory of the Department of metal forming

119991, Moscow, Leninskii pr., 4



References

1. Totten G.E., MacKenzie D.S. Handbook of aluminium. Vol. 1. Physical metallurgy and processes. N.Y.: Marcel Dekker Inc., 2003.

2. Beletskii V.M., Krivov G.A. Aluminum alloys (Composition, properties, technology, application): Handbook. Kiev: KOMINTEKh, 2005.

3. Williams J.C., Starke E.A. Progress in structural materials for aerospace systems. Acta Mater. 2003. Vol. 51. No. 19. P. 5775—5799. https://doi.org/10.1016/j.actamat.2003.08.023.

4. Alieva S.G., Al’tman M.B., Ambartsumyan S.M. еt al. Industrial aluminum alloys: Handbook. Moscow: Metallurgiya, 1984 (In Russ.).

5. Archakova Z.N., Balakhontsev G.A., Basova I.G. еt al. Structure and properties of semi-finished aluminum alloys products: Handbook. Moscow: Metallurgiya, 1984 (In Russ.).

6. Kliauga A.M., Sordi V.L., De Vincentis N.S., Bolmaro R.E., Schell N., Brokmeier H.-G. Severe plastic deformation by equal channel angular pressing and rolling: the influence of the deformation path on strain distribution. Adv. Eng. Mater. 2018. Vol. 20. No. 4. Paper 1700055. https://doi.org/10.1002/adem.201700055.

7. Verlinden B., Chen E., Duchêne L., Habraken A.M. Transient yielding during compression tests on ECAP’ed AA1050 aluminium. Mater. Sci. Forum. 2011. Vols. 667—669. P. 955—960. https://doi.org/10.4028/www.scientific.net/MSF.667-669.955.

8. Saito Y., Utsunomiya H., Tsuji N., Sakai T. Novel ultra-high straining process for bulkmaterials—development of the accumulative roll-bonding (ARB) process. Acta Mater. 1999. Vol. 47. No. 2. P. 579—583. https://doi.org/10.1016/S1359-6454(98)00365-6.

9. Lanjewar H., Naghdy S., Vercruysse F., Kestens L.A.I., Verleysen P. Severe plastically deformed commercially pure aluminum: Substructure, micro-texture and associated mechanical response during uniaxial tension. Mater. Sci. Eng. A. 2019. Vol. 764. Paper 138195. https://doi.org/10.1016/j.msea.2019.138195.

10. Verleysen P., Lanjewar H. Dynamic high pressure torsion: A novel technique for dynamic severe plastic deformation. J. Mater. Process. Technol. 2020. Vol. 276. Paper 116393. https://doi.org/10.1016/j.jmatprotec.2019.116393.

11. Vu V.Q., Prokof’eva O., Toth L.S., Usov V., Shkatulyak N., Estrin Y., Kulagin R., Varyukhin V., Beygelzimer Y. Obtaining hexagon-shaped billets of copper with gradient structure by twist extrusion. Mater. Charact. 2019. Vol. 153. P. 215—223. https://doi.org/10.1016/j.matchar.2019.04.042.

12. Faregh S.S.H., Hassani A. Stress and strain distribution in twist extrusion of AA6063 aluminum alloy. Int. J. Mater. Form. 2018. Vol. 11. No. 2. P. 175—184. https://doi.org/10.1007/s12289-017-1340-0.

13. Zhu Q.F., Zhao Z.H., Zuo Y.B., Li L., Cui J.Z. The structure evolution of a 99.995 percent high purity aluminum during multi-forging process in room temperature. Mater. Sci. Forum. 2014. Vol. 794—796. P. 876—881. https://doi.org/10.4028/www.scientific.net/MSF.794-796.876.

14. Galkin S.P., Romantsev B.A., Kharitonov E.A. Putting into practice innovative potential in the universal radial-shear rolling process. CIS Iron Steel Rev. 2014. No. 9. P. 35—39.

15. Galkin S.P., Kharitonov E.A., Romanenko V.P. Screw rolling for pipe-blank production. Steel Trans. 2009. Vol. 39. No. 8. P. 700—703. https://doi.org/10.3103/S096709120908018X.

16. Valeev I.S., Valeeva A.K., Fazlyakhmetov R.F., Khalikova G.R. Effect of radial-shear rolling on structure of aluminum alloy D16 (Al—4.4Cu—1.6Mg). Inorg. Mater. Appl. Res. 2015. Vol. 6. No. 1. P. 45—48. https://doi.org/10.1134/S2075113315010153.

17. Shurkin P.K., Akopyan T.K., Galkin S.P., Aleshchenko A.S. Effect of radial shear rolling on the structure and mechanical properties of a new-generation high-strength aluminum alloy based on the Al—Zn—Mg—Ni—Fe system. Metal Sci. Heat Treat. 2019. Vol. 60. No. 11—12. P. 764—769. https://doi.org/10.1007/s11041-019-00353-x.

18. Stefanik A., Szota P., Mróz S., Bajor T., Dyja H. Properties of the AZ31 magnesium alloy round bars obtained in different rolling processes. Arch. Metall. Mater. 2015. Vol. 60. No. 4. P. 3002—3005. https://doi.org/10.1515/amm-20150479.

19. Galkin S.P., Romantsev B.A., Ta D.X., Gamin Yu.V. Resource-saving technology for production of round bars from used shaft of rolling railroad stock. Chernye Metally. 2018. No. 4. P. 20—27.

20. Skripalenko M.M., Romantsev B.A., Kaputkina L.M., Galkin S.P., Skripalenko M.N., Cheverikin V.V. Study of transient and steady-state stages during two-high and threehigh screw rolling of a 12Kh18N10T steel workpiece. Metallurgist. 2019. Vol. 63. No. 3—4. P. 366—375. https://doi.org/10.1007/s11015-019-00832-9.

21. Karpov B.V., Patrin P.V., Galkin S.P., Kharitonov E.A., Karpov I.B. Radial-shear rolling of titanium alloy VT-8 bars with controlled structure for small diameter ingots (≤ 200 mm). Metallurgist. 2018. Vol. 61. No. 9—10. P. 884—890. https://doi.org/10.1007/s11015-018-0581-6.

22. Sheremetyev V., Kudryashova A., Cheverikin V., Korotitskiy A., Galkin S., Prokoshkin S., Brailovski V. Hot radial shear rolling and rotary forging of metastable beta Ti18Zr—14Nb (at.%) alloy for bone implants: Microstructure, texture and functional properties. J. Alloy. Compd. 2019. Vol. 800. P. 320—326. https://doi.org/10.1016/j.jallcom.2019.06.041.

23. Sheremet’ev V.A., Kudryashova A.A., Dinh X.T., Galkin S.P., Prokoshkin S.D., Brailovskii V. Advanced technology for preparing bar from medical grade Ti—Zr—Nb superelastic alloy based on combination of radial-shear rolling and rotary forging. Metallurgist. 2019. Vol. 63. No. 1—2. P. 51—61. https://doi.org/10.1007/s11015-019-00793-z.

24. Lopatin N.V., Salishchev G.A., Galkin S.P. Mathematical modeling of radial-shear rolling of the VT6 titanium alloy under conditions of formation of a globular structure. Russ. J. Non-Ferr. Met. 2011. Vol. 52. No. 5. P. 442—447. https://doi.org/10.3103/S1067821211050075.

25. Romancev B.A., Goncharuk A.V., Aleshchenko A.S., Gamin Y.V. Production of hollow thick-walled profiles and pipes made of titanium alloys by screw rolling. Russ. J. Non-Ferr. Met. 2015. Vol. 56. No. 5. P. 522—526. https://doi.org/10.3103/S1067821215050132.

26. Diez M., Kim H.-E., Serebryany V., Dobatkin S., Estrin Y. Improving the mechanical properties of pure magnesium by three-roll planetary milling. Mater. Sci. Eng. A. 2014. Vol. 612. P. 287—292. https://doi.org/10.1016/j.msea.2014.06.061.

27. Dobatkin S., Galkin S., Estrin Y., Serebryany V., Diez M., Martynenko N., Lukyanova E., Perezhogin V. Grain refinement, texture, and mechanical properties of a magnesium alloy after radial-shear rolling. J. Alloy. Compd. 2019. Vol. 774. P. 969—979. https://doi.org/10.1016/j.jallcom.2018.09.065.

28. Ding, X.-F., Shuang, Y.-H., Liu, Q.-Z., Zhao, C.-J. New rotary piercing process for an AZ31 magnesium alloy seamless tube. Mater. Sci. Tech. (U.K.). 2018. Vol. 34. No. 4. P. 408—418. https://doi.org/10.1080/02670836.2017.1393998.

29. Akopyan T.K., Belov N.A., Aleshchenko A.S., Galkin S.P., Gamin Y.V., Gorshenkov M.V., Cheverikin V.V., Shurkin P.K. Formation of the gradient microstructure of a new Al alloy based on the Al—Zn—Mg—Fe—Ni system processed by radial-shear rolling. Mater. Sci. Eng. A. 2019. Vol. 746. P. 134—144. https://doi.org/10.1016/j.msea.2019.01.029.

30. Akopyan T.K., Aleshchenko A.S., Belov N.A., Galkin S.P. Effect of radial—shear rolling on the formation of structure and mechanical properties of Al—Ni and Al—Ca aluminum—matrix composite alloys of eutectic type. Phys. Metal. Metallogr. 2018. Vol. 119. No. 3. P. 241—250. https://doi.org/10.1134/S0031918X18010039.

31. Gorelik S.S., Dobatkin S.V., Kaputkina L.M. Recrystallization of metals and alloys. 3rd ed. Moscow: MISIS, 2005 (In Russ.).

32. Fomin A.V., Aleshchenko A.S., Maslennikov I.M., Galkin S.P., Nikulin A.N. Structural and analytical evaluation of the strain intensity and its components during crossroll piercing at different feed angles. Metallurgist. 2019. Vol. 63. No. 5—6. P. 477—486. https://doi.org/10.1007/s11015-019-00848-1.

33. Kazuyuki N., Kouichi K., Chihiro H. Development and features of rotary reduction mill. ISIJ Intern. 1991. Vol. 31. No. 6. P. 620—627. https://doi.org/10.2355/isijinternational.31.620.

34. Skripalenko M.M., Galkin S.P., Sung H.J., Romantsev B.A., Huy T.B., Skripalenko M.N., Kaputkina L.M., Sidorow A.A. Prediction of potential fracturing during radial-shear rolling of continuously cast copper billets by means of computer simulation. Metallurgist. 2019. Vol. 62. No. 9—10. P. 849—856. https://doi.org/10.1007/s11015-01900728-8.

35. Deng G.Y., Zhu Q., Tieu K., Zhu H.T., Reid M., Saleh A.A., Su L.H., Ta T.D., Zhang J., Lu C., Wu Q., Sun D.L. Evolution of microstructure, temperature and stress in a high speed steel work roll during hot rolling: Experiment and modeling. J. Mater. Process. Technol. 2017. Vol. 240. P. 200—208. https://doi.org/10.1016/j.jmatprotec.2016.09.025.

36. Zhang Z., Liu D., Yang Y., Zheng Y., Pang Y., Wang J., Wang H. Explorative study of rotary tube piercing process for producing titanium alloy thick-walled tubes with bi-modal microstructure. Arch. Civ. Mech. Eng. 2018. Vol. 18. No. 4. P. 1451—1463. https://doi.org/10.1016/j.acme.2018.05.005.

37. QuantorForm2019. URL: https://qform3d.com (accessed: 26.11.2019).

38. Zhang Z., Liu D., Yang Y., Wang J., Zheng Y., Zhang F. Microstructure evolution of nickel-based superalloy with periodic thermal parameters during rotary tube piercing process. Int. J. Adv. Manuf. Technol. 2019. Vol. 104. No. 9—12. P. 3991—4006. https://doi.org/10.1007/s00170019-04126-x.

39. Hallberg H., Wallin M., Ristinmaa M. Modeling of continuous dynamic recrystallization in commercialpurity aluminum. Mater. Sci. Eng. A. 2010. Vol. 527. No. 4—5. P. 1126—1134. https://doi.org/10.1016/j.msea.2009.09.043.

40. Hallberg H. Influence of process parameters on grain refinement in AA1050 aluminum during cold rolling. Int. J. Mech. Sci. 2013. Vol. 66. P. 260—272. https://doi.org/10.1016/j.ijmecsci.2012.11.016.

41. Wang Y.L., Molotnikov A., Diez M., Lapovok R., Kim H.-E., Wang J.T., Estrin Y. Gradient structure produced by three roll planetary milling: Numerical simulation and microstructural observations. Mater. Sci. Eng.: A. 2015. Vol. 639. P. 165—172. https://doi.org/10.1016/j.msea.2015.04.078.


Review

For citations:


Gamin Yu.V., Koshmin A.N., Dolbachev A.P., Galkin S.P., Aleshchenko A.S., Kadach M.V. Studying the influence of radial-shear rolling on the thermo-deformation conditions of aluminum AA1050 processing. Izvestiya. Non-Ferrous Metallurgy. 2020;(5):70-83. (In Russ.) https://doi.org/10.17073/0021-3438-2020-5-70-83

Views: 517


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)